
C++ School 11-15 November, DESY

Our Small C++ Project A simple MC generator to
calculate Z production at Born
level

Cross section
The Born level cross section is phase space integral of the matrix elements and the
observable and it is convoluted to the parton distribution functions (PDFs):

The event is an array of momenta and flavor of the incoming and outgoing partons.

� =

Z 1

0
d⌘a

Z 1

0
d⌘b

Z
d�(⌘a, ⌘b; {p, f}m)

⇥ fa/A(⌘a, µ
2)fb/B(⌘b, µ

2)

⇥ |M({p, f}m)|2 F ({p, f}m)

Phase space

PDFs

Matrix element Observables

Need a Lorentz vector

Lorentz vector: Three vector
Lorentz vector has 3 space-like and 1 time-like component. The space-like part is the
usual three vector with X, Y, Z component. Thus first we want to define a class that
represents three vectors.
class threevector	
{	
protected:	
 // data member	
 double _M_x, _M_y, _M_z;	
 	
 // constructors	
 threevector(const threevector&) = default; // defaulted copy constructor 	
 // elements access	
 	
 // aritmethic operators	
 // +=, -=, *=, /=	
 	
 double mag2 () const { return _M_x*_M_x + _M_y*_M_y + _M_z*_M_z;}	
 double perp2() const { return _M_x*_M_x + _M_y*_M_y;}	
 	
 // magnitude and the transverse component	
 double mag () const { return std::sqrt(this -> mag2());}	
 double perp() const { return std::sqrt(this -> perp2());}	
 	
 // azimuth and polar angles	
 double phi() const { return _M_x == 0.0 && _M_y == 0.0 ? 0.0 : std::atan2(_M_y,_M_x);}	
 	
 double theta() const {	
 double p = this -> perp();	
 return p == 0.0 && _M_z == 0.0 ? 0.0 : std::atan2(p, _M_z);	
 }	
};	

• Write the header file
threevector.h!

• We don’t need .cc file
since every functions
are simple and they
can be inline.!

• Play with, try the
arithmetic operators
with simple examples.

Three vector

#include <iostream>	
#include "threevector.h"	
!
using namespace std;	
!
!
int main()	
{	
 threevector a(1.0,2.0,3.0), b(5.0,6.0,7.0), c;	
 	
 c =a+b;	
 cout<<"c = a+b = "<<c<<endl;	
!
 c = a-b;	
 cout<<"c = a+b = "<<c<<endl;	
 cout<<"a*b = "<<a*b<<c<<endl;	
 cout<<"a*2.0 = "<<a*2.0<<c<<endl;	
 cout<<"a/2.0 = "<<a/2.0<<c<<endl;	
 	
 return 0;	
}	

At the end of the day you should be able to do something like this:

Lorentz vector
Lorentz vector also has time-like component. Define a class inherited from three vector.
Define all the arithmetic operators plus some more functions
class lorentzvector // inherited from threevector	
{	
 	
 // member functions	
 double plus () const { return _M_t + _M_z;}	
 double minus() const { return _M_t - _M_z;}	
 double rapidity() const { return 0.5*std::log(plus()/minus());}	
 double prapidity() const { return -std::log(std::tan(0.5*theta()));}	
 double mag2() const { return _M_t*_M_t - threevector::mag2();}	
 	
 threevector boostVector() const {	
 return threevector(*this) /= _M_t;	
 }	
 	
 // Lorentz boost	
 void boost(double, double, double);	
 void boost(const threevector& a) { boost(a.X(), a.Y(), a.Z());}	
};	

• Write the header file
lorentzvector.h!

• The boost(…) function is
implemented in the
lorentzvector.cc file.!

• Play with, try the
arithmetic operators with
simple examples.

http://lorentzvector.cc

