

New physics searches with bhadrons at the ATLAS experiment

Lidia Smirnova (Lomonosov Moscow SU) on behalf of the ATLAS Collaboration

Outline :

- Search for $B^0_{\ s} \rightarrow \mu^+\mu^-$ rare decay
- Updates for CP violation parameters from angular amplitudes of $B^0_s \rightarrow J/\psi(\mu^+\mu^-) \phi(K^+K^-)$ decay:
 - 1) CP-violating phase ϕ_s
 - 2) the average B_s meson lifetime $1/\Gamma_s$
 - 3) the decay width difference $\Delta\Gamma_s$

The searches with b-hadrons can present indirect evidence for New Physics and show the size of new effects. They are complementary to direct searches.

Search for $B^0{}_s \longrightarrow \mu^+ \mu^-$ rare decay

Motivation

 The decay is strongly suppressed in SM • It realizes by FCNC Contributions of possibly existing new particles may increase or decrease decay branching ratio for B^0 , $\rightarrow \mu^+\mu^-$ and demonstrate presence of **New Physics**

BR _{SM} (B⁰ $\rightarrow \mu^+\mu^-$) = (3.23 ± 0.27) ·10 ⁻⁹

Buras et al. , Eur. Phys. J. C72 (2012) 2172

CMS + LHCb common results show evidence for

BR ($B_s^0 \rightarrow \mu^+\mu^-$) = (2.9 ± 0.7) ·10⁻⁹ with all RUN-1 collected data

LHCb: Phys. Rev. Lett. 111 (2013) 101805 CMS: Phys. Rev. Lett. 111 (2013) 101804 Combination: CMS-PAS-BPH-13-007

There is still room for New Physics and new results are welcome!

ATLAS search for $B^0_{\ s} \rightarrow \mu^+ \mu^-$

Results with half data 2011 (2.4 fb⁻¹) analysis published in

PRL713 (2012) 387: BR ($B^0_{\ s} \rightarrow \mu^+\mu^-$) < 2.2 $\cdot 10^{-8}$ at 95% C.L.

Update with full 2011 data 4.9 fb⁻¹ is presented

Analysis overview

ATLAS-CONF-2013-076

- •Unbiased relative BR measurements
- •Blind analysis (signal region SR ± 300 MeV around B⁰_s mass blinded)
- •Use MC to model data
- •Background data in two sidebands divided 50/50 to optimize selection cuts and to calculate bkg in signal region
- •Multivariable analysis for Signal/Bkg discrimination (BDT with 13 var.)
- •Signal extraction by event counting in SR and bkg estimation from sidebands
- Limit extraction by CL_s method

L.Smirnova - New physics searches with bhadrons at the ATLAS experiment

$B^0_{s} \rightarrow \mu^+ \mu^-$ analysis overview

Relative measurements : reference channel $B^+ \rightarrow J/\psi K^+$

hadrons at the ATLAS exp

 $m_{J/\psi K}$ [MeV]

$B_{s}^{0} \rightarrow \mu^{+}\mu^{-}$: Background estimation

Two main sources of background:

- 1. Combinatorial background (continuum) :
- Smooth mass spectrum
- BDT classifier is trained to suppress this bkg
- $b\overline{b} \rightarrow \mu\mu X$ provides a good description
- Estimated from sidebands to signal region
- 2. Resonant background from $B \rightarrow h^+h'^-$, $h = \pi$ or K
- Irreducible background with π and K misidentified as muons
- Shown to be small w.r.t the continuum
- Estimated from MC

$B^0_{s} \rightarrow \mu^+ \mu^-$: Signal/Bkg discrimination

BDT output distribution for MC signal events and background events from sidebands (both normalized to bkg events number)

Comparisons between sideband data and datareweighted $b\overline{b} \rightarrow \mu\mu X$ MC events for one of the most powerful separation variable $|\alpha_{2D}|$.

..Smirnova - New physics searches with bhadrons at the ATLAS experiment

Result: Limit on 2011 BR($B^0_s \rightarrow \mu^+ \mu^-$)

N_{bkg} expected in signal window = 6.75 N_{obs} in signal window = 6

BR $_{obs}$ (B $^{0}_{s}$ \rightarrow $\mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -}$) < 1.5 (1.2) $\cdot 10^{\scriptscriptstyle -8}$ at 95% (90%) C.L.

L.Smirnova - New physics searches with bhadrons at the ATLAS experiment

What is improved in the 2012 analysis

- Statistically significant MC background sample for detailed studies on the bkg composition;
- Improved fake-muon rejection;
- Improved multivariable analysis to discriminate the continuum;
- Maximum likelihood fit to extract the signal yield
- And more is ongoing work!

Results from analysis full data 2012 with 20 fb⁻¹ will be published soon!

<u>CP violation parameter φ_s and $\Delta \Gamma_s$ from angular</u> amplitudes of $B^0_s \rightarrow J/\psi \phi$ decay

- New phenomena beyond SM may alter CP violation in B-decays
- $B^0_s \rightarrow J/\psi \phi$ is expected to be sensitive to NP contribution
- CP violation occurs due to interference between direct decays and B_s^0 $antiB_s^0$ mixing, characterized by Δm_s of heavy B_H and light B_L mass eigenstates, and is measured by weak phase φ_s
- It is small in Standard Model: φ_s = 0.0368 \pm 0.0018 rad

(PRL 97(2006)151803)

- The width difference $\Delta \Gamma_s = \Gamma_H \Gamma_L$ is not affected by NP and is useful for test
- The average decay width $\Gamma_s = (\Gamma_H + \Gamma_L)/2$
- φ_s , Γ_s and $\Delta\Gamma_s$ are measured from fully reconstructed decays $B^0_s \rightarrow J/\psi(\mu^+\mu^-)\varphi(K^+K^-)$ with only statistical CP states separation with 4.9 fb⁻¹ (JHEP12(2012)072)
- the measurements are updated with flavour tagged time-dependent angular analysis (arXiv:1407.1796, Accepted by PRD)

L.Smirnova - New physics searches with bhadrons at the ATLAS experiment

Flavour tagging for CPV measurement

•The information of the initial flavour of B_s^0 is produced from the other b-quark in the event (OST – opposite-side tagging)

•Method is calibrated with use of $B^{\pm} \rightarrow J/\psi K^{\pm}$ events

•lt uses :

1) An opposite *muon cone charge* with tracks in cone $\Delta R=0.5 \ Q_{\mu}$ (k=1.1)

2) If no muon, a **jet charge** $Q_{jet} = \sum_{i=1}^{n} Q_{jet} = \sum_{i=1}^{n} Q_{jet}$

$$\frac{\sum_{i=1}^{N \text{ tracks}} q^{i} \cdot (p_{T}^{i})^{\kappa}}{\sum_{i=1}^{N \text{ tracks}} (p_{T}^{i})^{\kappa}} Q_{\mu} = \frac{\sum_{i=1}^{N \text{ tracks}} q^{i} \cdot (p_{T}^{i})^{\kappa}}{\sum_{i=1}^{N \text{ tracks}} (p_{T}^{i})^{\kappa}}$$

Tagger	Efficiency [%]	Dilution [%]	Tagging Power [%]
Segment Tagged muon	1.08 ± 0.02	36.7 ± 0.7	0.15 ± 0.02
Combined muon	3.37 ± 0.04	50.6 ± 0.5	0.86 ± 0.04
Jet charge	27.7 ± 0.1	12.68 ± 0.06	0.45 ± 0.03
Total	32.1 ± 0.1	21.3 ± 0.08	1.45 ± 0.05

jet charge distribution for B^{\pm}

$B^{0}_{s} \rightarrow J/\psi(\mu\mu) \phi(KK)$ decay selection

 no displaced vertex or time cuts applied in trigger nor offline • J/ ψ mass window adapted to barrel and endcap • φ mass window 22 MeV • Kaons $p_T > 1 \text{ GeV}$ • B-vertex $\chi^2/d.o.f. < 3$ • In total 131k B⁰, candidates within 5.15 < $m(B^{0}) < 5.65 \text{ GeV used}$ in the fit • Number of signal B⁰ candidates extracted from the fit **22670 ± 150**

$B^{0}_{s} \rightarrow J/\psi(\mu\mu) \phi(KK)$ decay analysis

- Parameters extracted from unbinned maximum likelihood fit;
- The likelihood function includes the signal and bkg probability density functions: (PDF) $\ln \mathcal{L} = \sum_{i=1}^{N} \{w_i \cdot \ln(f_s \cdot \mathcal{F}_s(m_i, t_i, \Omega_i, P(B|Q))\}$
- It uses reconstructed $+(1 f_{s} \cdot (1 + f_{B^{0}})) \{ \mathcal{F}_{hkg}(m_{i}, t_{i}, \Omega_{i}, P(B|Q)) \}$ uncertainties, tag probability and transversity angels $\theta_{T}, \psi_{T}, \phi_{T}$ for each $B_{s}^{0} \rightarrow J/\psi\phi$ candidate;

 $+f_{\rm s} \cdot f_{B^0} \cdot \mathcal{F}_{B^0}(m_i, t_i, \Omega_i, P(B|Q))$

- θ_{τ} , ψ_{τ} , ϕ_{τ} are defined in the J/ ψ (θ_{τ} , ϕ_{τ}) and ϕ (ψ_{τ})rest frames:
- Signal PDF includes all measured quantities with uncertainties.

$B^{0}_{s} \rightarrow J/\psi \phi$ decay analysis

• Distribution for decay time t and transversity angles $\Omega(\theta_{\tau}, \psi_{\tau}, \phi_{\tau})$ is given by the differential decay rate:

 $\frac{d^4\Gamma}{dt\ d\Omega} = \sum_{k=1}^{10} \mathcal{O}^{(k)}(t) g^{(k)}(\theta_T, \psi_T, \phi_T) \text{, where } \mathcal{O}^{(k)}(t) \text{ and } g^{(k)}(\theta_T, \psi_T, \phi_T)$

are the time dependent amplitudes and the angular functions, they are obtained from the fit; the time dependent amplitudes are the same for B_s^0 and anti- B_s^0 , but with sign reversal in term with Δm_s

Ten time-dependent amplitudes, extracted from the fit

k	$\mathcal{O}^{(k)}(t)$	$g^{(k)}(\theta_T,\psi_T,\phi_T)$
1	$\frac{1}{2} A_0(0) ^2 \left[(1+\cos\phi_s) e^{-\Gamma_{\rm L}^{(s)}t} + (1-\cos\phi_s) e^{-\Gamma_{\rm H}^{(s)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	$2\cos^2\psi_T(1-\sin^2\theta_T\cos^2\phi_T)$
2	$\frac{1}{2} A_{\parallel}(0) ^{2}\left[(1+\cos\phi_{s})e^{-\Gamma_{\rm L}^{(s)}t}+(1-\cos\phi_{s})e^{-\Gamma_{\rm H}^{(s)}t}\pm 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2\psi_T(1-\sin^2\theta_T\sin^2\phi_T)$
3	$\frac{1}{2} A_{\perp}(0) ^{2}\left[(1-\cos\phi_{s})e^{-\Gamma_{\rm L}^{(s)}t} + (1+\cos\phi_{s})e^{-\Gamma_{\rm H}^{(s)}t} \mp 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2\psi_T\sin^2\theta_T$
4	$\frac{1}{2} A_0(0) A_{\parallel}(0) \cos\delta_{\parallel}$	$-\frac{1}{\sqrt{2}}\sin 2\psi_T \sin^2\theta_T \sin 2\phi_T$
	$\left[(1 + \cos \phi_s) e^{-\Gamma_{\rm L}^{(s)}t} + (1 - \cos \phi_s) e^{-\Gamma_{\rm H}^{(s)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin \phi_s \right]$	
5	$ A_{\parallel}(0) A_{\perp}(0) [\frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t} - e^{-\Gamma_{\rm H}^{(s)}t})\cos(\delta_{\perp} - \delta_{\parallel})\sin\phi_{s}$	$\sin^2\psi_T\sin 2\theta_T\sin\phi_T$
	$\pm e^{-\Gamma_s t} (\sin(\delta_{\perp} - \delta_{\parallel}) \cos(\Delta m_s t) - \cos(\delta_{\perp} - \delta_{\parallel}) \cos\phi_s \sin(\Delta m_s t))]$	
6	$ A_0(0) A_{\perp}(0) [\frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t} - e^{-\Gamma_{\rm H}^{(s)}t})\cos\delta_{\perp}\sin\phi_s$	$\frac{1}{\sqrt{2}}\sin 2\psi_T \sin 2\theta_T \cos \phi_T$
	$\pm e^{-\Gamma_s t} (\sin \delta_{\perp} \cos(\Delta m_s t) - \cos \delta_{\perp} \cos \phi_s \sin(\Delta m_s t))]$	
7	$\frac{1}{2} A_{S}(0) ^{2}\left[\left(1-\cos\phi_{s}\right)e^{-\Gamma_{L}^{(s)}t}+\left(1+\cos\phi_{s}\right)e^{-\Gamma_{H}^{(s)}t}\mp 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\frac{2}{3}\left(1-\sin^2\theta_T\cos^2\phi_T\right)$
8	$ A_{S}(0) A_{\parallel}(0) [\frac{1}{2}(e^{-\Gamma_{L}^{(s)}t} - e^{-\Gamma_{H}^{(s)}t})\sin(\delta_{\parallel} - \delta_{S})\sin\phi_{s}$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin^2\theta_T\sin 2\phi_T$
	$\pm e^{-\Gamma_s t} (\cos(\delta_{\parallel} - \delta_S) \cos(\Delta m_s t) - \sin(\delta_{\parallel} - \delta_S) \cos\phi_s \sin(\Delta m_s t))]$	
9	$\frac{1}{2} A_{S}(0) A_{\perp}(0) \sin(\delta_{\perp}-\delta_{S})$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin2\theta_T\cos\phi_T$
	$\left(1 - \cos\phi_s\right) e^{-\Gamma_{\rm L}^{(s)}t} + \left(1 + \cos\phi_s\right) e^{-\Gamma_{\rm H}^{(s)}t} \mp 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s\right)$	
10	$ A_0(0) A_S(0) [\frac{1}{2}(e^{-\Gamma_{\rm H}^{(s)}t} - e^{-\Gamma_{\rm L}^{(s)}t})\sin\delta_S\sin\phi_s$	$\frac{4}{3}\sqrt{3}\cos\psi_T\left(1-\sin^2\theta_T\cos^2\phi_T\right)$
	$\pm e^{-\Gamma_s t} (\cos \delta_S \cos(\Delta m_s t) + \sin \delta_S \cos \phi_s \sin(\Delta m_s t))]$	

9 physics variables to describe $B_s \rightarrow J/\psi\phi$ and S-wave component extracted from fit: $\Delta\Gamma_s, \phi_s, \Gamma_s, |A^0(0)|^2, |A_1(0)|^2, \delta_{||}, |A_s(0)|^2, \delta_{s\perp}, \delta_{\perp}$

Conclusions

- ATLAS results from full data 2011 for pp collisions at 7 TeV (4.9 fb⁻¹) are obtained for New Physics searches with rare decay $B_{s}^{0} \rightarrow \mu^{+}\mu^{-}$ selection and $B_{s}^{0} \rightarrow J/\psi \phi$ decay parameters measurement
- Flavour tagged time dependent angular analysis is used for $B^0_s \rightarrow J/\psi \phi$ with essential improvement of previous ATLAS measurement without tagging
- All results are consistent with the predictions of the Standard Model
- Results with analysis of 20 fb⁻¹ data 2012 at 8 TeV are coming soon!