Heavy flavour spectroscopy and b-decay properties with the ATLAS detector Andreas Korn University College London (for the ATLAS Collaboration) Andreas.Korn@cern.ch

ATLAS: a particle detector at the LHC

+ R

ATLAS B-physics overview

- B-physics sensitive to new physics
- ATLAS advantage: high luminosity
- Largely relies on dimuon triggers
- Rich flavour program –B-hadron production
 - -Onia production
 - -Charm production
 - -Lifetimes

Î

- -CP violation
- -Parity Violation
- -Rare decays

PANIC!14, 28th August

Andreas Korn

ATLAS B-physics Highlights

Andreas Korn

Observation of $\chi_b(3P) \rightarrow \Upsilon(2,3s)\gamma$

$B_{c}(2S) \rightarrow B_{c}^{\pm}\pi\pi \text{ with } B_{c}^{\pm} \rightarrow J/\psi\pi^{\pm}$

Andreas Korn

6

m

 $\rightarrow J/\psi\Lambda$ mass & lifetime

Andreas Korn

Î

Parity violation in $\Lambda_{_{b}} \rightarrow J/\psi\Lambda$

Parity Violation in $\Lambda_{_{b}} \rightarrow J/\psi \Lambda$

				1 19					
• F	Full PDF described b)V	$w(\Omega, \vec{A}, P) = 0$	$\frac{1}{(I-\lambda)^2} \sum f_{1i}(\vec{A}) f_{2i}(P, \alpha_{\Lambda}) F_i(\Omega),$					
• Simplifies for Polarization P = 0 $(4\pi)^3 \sum_{i=0}^{i=0} in(i)$									
$\frac{\imath}{0}$	$\frac{J_{1i}}{a \cdot a^* + a \cdot a^* + b \cdot b^* + b \cdot b^*}$	$\frac{f_{2i}}{1}$	F_i	 • 6 of 19 terms remain: 					
1	$a_{+}a_{+}^{*} - a_{-}a_{-}^{*} + b_{+}b_{+}^{*} - b_{-}b_{-}^{*}$	P	$\cos \theta$	$i f_{1i}$					
2	$a_{+}a_{+}^{*} - a_{-}a_{-}^{*} - b_{+}b_{+}^{*} + b_{-}b_{-}^{*}$	α_{Λ}	$\cos \theta_1$	$\frac{1}{0}$					
- 3	$a_{+}a_{+}^{*} + a_{-}a_{-}^{*} - b_{+}b_{+}^{*} - b_{-}b_{-}^{*}$	$P \alpha_{\Lambda}$	$\cos\theta\cos\theta_1$	2 $(k_{\perp}^{2} + k_{\perp}^{2} - 1) + \alpha_{b}(k_{\perp}^{2} - k_{\perp}^{2})$					
4	$-a_{+}a_{+}^{*} - a_{-}a_{-}^{*} + \frac{1}{2}b_{+}b_{+}^{*} + \frac{1}{2}b_{-}b_{-}^{*}$	1	$\frac{1}{2}(3\cos^2\theta_2 - 1)$	$4 \frac{1}{2} [(3k^2 - 3k^2 - 1) + 3\alpha_b(1 - k^2 - k^2)]$					
5	$-a_{+}a_{+}^{*} + a_{-}a_{-}^{*} + \frac{1}{2}b_{+}b_{+}^{*} - \frac{1}{2}b_{-}b_{-}^{*}$	P	$\frac{1}{2}(3\cos^2\theta_2 - 1)\cos\theta$	$6 -\frac{1}{4} [(k_{+}^{2} + k_{-}^{2} - 1) + \alpha_{k}(3 + k_{+}^{2} - k_{+}^{2})]$					
6	$-a_{+}a_{+}^{*} + a_{-}a_{-}^{*} - \frac{1}{2}b_{+}b_{+}^{*} + \frac{1}{2}b_{-}b_{-}^{*}$	α_{Λ}	$\frac{1}{2}(3\cos^2\theta_2 - 1)\cos\theta_1$	$= \frac{2}{4} \left[\left(\frac{n_{+}}{n_{+}} + \frac{n_{-}}{n_{+}} \right) + \frac{2}{n_{+}} \left(\frac{n_{+}}{n_{+}} + \frac{n_{-}}{n_{+}} \right) \right]$					
- 7 - ·	$-a_{+}a_{+}^{*} - a_{-}a_{-}^{*} - \frac{1}{2}b_{+}b_{+}^{*} - \frac{1}{2}b_{-}b_{-}^{*}$	$P \alpha_{\Lambda}$	$\frac{1}{2} (3\cos^2\theta_2 - 1)\cos\theta\cos\theta_1$	$\frac{18}{\sqrt{2}} \left[\frac{2}{2} \sqrt{k_{-}^{2} (1 - k_{-}^{2}) \cos(-\Delta_{-})} - \frac{1 + \alpha_{b}}{2} \sqrt{k_{+}^{2} (1 - k_{+}^{2}) \cos(\Delta_{+})} \right]$					
8	$-3\operatorname{Re}(a_+a^-)$	$P \alpha_{\Lambda}$	$\sin\theta\sin\theta_1\sin^2\theta_2\cos\phi_1$	$10 - \frac{3}{2} \left[\frac{1-\alpha_b}{k} \sqrt{k^2 (1-k^2)} \sin(-\Delta_{-}) - \frac{1+\alpha_b}{k} \sqrt{k^2 (1-k^2)} \sin(\Delta_{+}) \right]$					
9	$3Im(a_+a)$	$P \alpha_{\Lambda}$	$\sin\theta \sin\theta_1 \sin^2\theta_2 \sin\phi_1$	$\frac{15 - \sqrt{2} \left[-\frac{2}{\sqrt{2}} \sqrt{\kappa_{-} (1 - \kappa_{-}) \sin(-\Delta_{-})} - \frac{2}{2} \sqrt{\kappa_{+} (1 - \kappa_{+}) \sin(\Delta_{+})} \right]}{2}$					
10	$-\frac{1}{2}\operatorname{Ke}(b_{-}b_{+})$	$\frac{P \alpha_{\Lambda}}{D \alpha}$	$\sin\theta \sin\theta_1 \sin\theta_2 \cos(\phi_1 + 2\phi_2)$ $\sin\theta \sin\theta_1 \sin^2\theta_2 \sin(\phi_1 + 2\phi_2)$						
10	$\frac{\overline{2}}{2}$ III((oo_+))	$P \alpha_{\Lambda}$	$\sin \theta \sin \theta_1 \sin \theta_2 \sin(\phi_1 + 2\phi_2)$	$- k = - \frac{ b }{ b }$					
12	$-\frac{1}{\sqrt{2}} \operatorname{Re}(b_{-}a_{+} + a_{-}b_{+})$	$P \alpha_{\Lambda}$	$\sin\theta \cos\theta_1 \sin\theta_2 \cos\theta_2 \cos\phi_2$	$\sqrt{ a_{-} ^{2}+ b_{-} ^{2}}$					
13	$\frac{1}{\sqrt{2}} \operatorname{Im}(b_{-}a_{+}^{+} + a_{-}b_{+}^{+})$	$P \alpha_{\Lambda}$	$\sin\theta\cos\theta_1\sin\theta_2\cos\theta_2\sin\phi_2$	v · · · ·					
14	$-\frac{3}{\sqrt{2}}\text{Re}(b_{-}a_{-}^{*}+a_{+}b_{+}^{*})$	$P \alpha_{\Lambda}$	$\cos\theta\sin\theta_1\sin\theta_2\cos\theta_2\cos(\phi_1+\phi_2)$. la.l					
15	$\frac{3}{\sqrt{2}} \mathrm{Im}(b_{-}a_{-}^{*}+a_{+}b_{+}^{*})$	$P \alpha_{\Lambda}$	$\cos\theta\sin\theta_1\sin\theta_2\cos\theta_2\sin(\phi_1+\phi_2)$	$k_{+} = \frac{ a_{+} }{\sqrt{ a_{+} }}$					
16	$\frac{3}{\sqrt{2}} \operatorname{Re}(a_{b_{+}^{*}} - b_{-}a_{+}^{*})$	P	$\sin\theta\sin\theta_2\cos\theta_2\cos\phi_2$	$\sqrt{ a_+ ^2+ b_+ ^2}$					
17	$-\frac{3}{\sqrt{2}}$ Im $(a_{-}b_{+}^{*}-b_{-}a_{+}^{*})$	-P	$\sin\theta\sin\theta_2\cos\theta_2\sin\phi_2$						
18	$\frac{3}{\sqrt{2}} \tilde{R}e(b_{-}a_{-}^{*}-a_{+}b_{+}^{*})$	α_{Λ}	$\sin\theta_1\sin\theta_2\cos\theta_2\cos(\phi_1+\phi_2)$	$\alpha_{-} = a_{+} ^{2} - a_{-} ^{2} + b_{+} ^{2} - b_{-} ^{2}$					
19	$-\frac{\sqrt{3}}{\sqrt{2}}$ Im $(b_{-}a_{-}^{*}-a_{+}b_{+}^{*})$	α_{Λ}	$\sin\theta_1\sin\theta_2\cos\theta_2\sin(\phi_1+\phi_2)$	b $ \alpha+ $ $ \alpha- $ $ 0+ $ $ 0- $					
	•			=					

PANIC!14, 28th August

10

Andreas Korn

H

Angular moments $\Lambda_{b} \rightarrow J/\psi \Lambda$

UC

Andreas Korn

PANIC!14, 28th August

$\Lambda_{h} \rightarrow J/\psi \Lambda$ Results

$$\alpha_b = 0.30 \pm 0.16(\text{stat}) \pm 0.06(\text{syst}),$$

$$k_+ = 0.21^{+0.14}_{-0.21}(\text{stat}) \pm 0.13(\text{syst}),$$

$$k_- = 0.13^{+0.20}_{-0.13}(\text{stat}) \pm 0.15(\text{syst}),$$

Phys. Rev. D 89 (2014) 092009

• Compare with

IIIII

• LHCb:
$$\alpha_{b} = 0.05 \pm 0.17_{stat} \pm 0.07_{sy}$$

Phys. Lett. B 724, 27 (2013)

HQET: α_b = 0.78 Nucl.Phys A755, 435 (2005)
pQCD: -0.17 < α_b < -0.14

Phys. Rev. D 65, 074030 (2002)

$$c_{-} = rac{|b_{-}|}{\sqrt{|a_{-}|^2 + |b_{-}|^2}}$$

$$k_+ = rac{|a_+|}{\sqrt{|a_+|^2 + |b_+|^2}},$$

PANIC!14, 28th August

Andreas Korn

Conclusion

- ATLAS has an active B-physics program
- Benefits from higher luminosity but also more difficult environment due to pileup
- Interesting Results on
 - New particles:

- Parity Violation Λ_{b} : $\alpha_{b} = 0.30 \pm 0.16_{stat.} \pm 0.06_{syst.}$
- See also other ATLAS B-physics talks (L. Smirnova, R. Jones, S. Prell)
- Further results and updates in progress
- New Physics is still hiding out

Bonus Slides

Andreas Korn

PANIC!14, 28th August

Parity Violation in $\Lambda_{b} \rightarrow J/\psi \Lambda$

$B_{s} \rightarrow J/\psi \phi \ Likelihood$

• T	1	$ A_0 ^2(t)$	=	$ A_0 ^2 e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right)\right] \pm \sin\phi_s \sin(\Delta m t) \right],$
	2	$ A_{\parallel}(t) ^2$	=	$ A_{\parallel} ^2 e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) \pm \sin\phi_s \sin(\Delta m t)\right],$
	3	$ A_{\perp}(t) ^2$	=	$ A_{\perp} ^2 e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) + \sin\phi_s \sin(\Delta m t) \right],$
	4	$\Im(A_{\parallel}(t) A_{\perp}(t))$	=	$ A_{\parallel} A_{\perp} e^{-\Gamma_{s}t}[-\cos(\delta_{\perp}-\delta_{\parallel})\sin\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right)$ $\mp\cos(\delta_{\perp}-\delta_{-\parallel})\cos\phi_{s}\sin(\Delta mt)\pm\sin(\delta_{\perp}-\delta_{\parallel})\cos(\Delta mt)],$
	5	$\Re(A_0(t)A_{\parallel}(t))$	=	$ A_0 A_{\parallel} e^{-\Gamma_s t}\cos(\delta_{\parallel} - \delta_0)[\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right)$ $(\pm)\sin\phi_s \sin(\Delta m t)],$
	6	$\Im(A_0(t) A_{\perp}(t))$	=	$ A_0 A_{\perp} e^{-\Gamma_s t}[-\cos(\delta_{\perp}-\delta_0)\sin\phi_s\sinh\left(\frac{\Delta\Gamma}{2}t\right)$ $(\mp\cos(\delta_{\perp}-\delta_0)\cos\phi_s\sin(\Delta mt) \pm \sin(\delta_{\perp}-\delta_0)\cos(\Delta mt)],$
	7	$ A_s(t) ^2$	=	$ A_s ^2 e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right)\right] + \sin\phi_s \sin(\Delta m t),$
	8	$\Re(A_s^*(t)A_{\parallel}(t))$	=	$ A_{s} A_{\parallel} e^{-\Gamma_{s}t}[-\sin(\delta_{\parallel}-\delta_{s})\sin\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right)] = \sin(\delta_{\parallel}-\delta_{s})\cos\phi_{s}\sin(\Delta mt)$ $(\pm)\cos(\delta_{\parallel}-\delta_{s})\cos(\Delta mt)],$
	9	$\Im(A_s^*(t)A_{\perp}(t))$	=	$ A_s A_{\perp} e^{-\Gamma_s t}\sin(\delta_{\perp}-\delta_s)[\cosh\left(\frac{\Delta\Gamma}{2}t\right)+\cos\phi_s\sinh\left(\frac{\Delta\Gamma}{2}t\right)$ $\boxed{\mp\sin\phi_s\sin(\Delta m t)]},$
	10	$\Re(A_s^*(t)A_0(t))$	=	$ A_s A_0 e^{-\Gamma_s t} \left[-\sin(\delta_0 - \delta_s)\sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right)\right]$ $+\sin(\delta_0 - \delta_s)\cos\phi_s\sin(\Delta m t) \pm \cos(\delta_0 - \delta_s)\cos(\Delta m t)\right].$

Andreas Korn

16

PANIC!14, 28th August

- B

$B_s \rightarrow J/\psi \phi$ Introduction

- Interference between mixed and unmixed decays
- $B_s \rightarrow \text{Vector-Vector decay, three spin states}$ L=0,2 (A_0, A_{\parallel}) CP-even L=1 (A_{\perp}) CP-odd CP=CP(J/ ψ)CP(ϕ)(-1)^L
- Use angular analysis to disentangle contributions

$B_s \rightarrow J/\psi \phi$ Angular Analysis

$B_s \rightarrow J/\psi \phi$ Likelihood

- Unbinned likelihood fit, 25 free parameters
- $\mathcal{L} = \prod f_s \cdot \mathcal{F}_{sig}(m_i, t_i, \Omega_i, \sigma_m, \sigma_t, \Gamma_s, \Delta \Gamma_s, \phi_s, A_0, A_{\parallel}, A_S, \delta_{\parallel}, \delta_{\perp}, \delta_s, P(B|Q)) + (1 f_s \cdot (1 + f_{B0})) \cdot \mathcal{F}_{bkg}(m_i, t_i, \Omega_i, \sigma_m, \sigma_t, P(B|Q)) + \Omega = (\psi_T, \theta_T, \phi_T)$
 - Signal
 - -Untagged analysis: oscillation terms drop out
 - -New Tagged analysis with extra information
 - B⁰ background, continuum background,
 - New: B-tagging

 -Muon & jetcharge taggers to identify BvsB (εD²=(1.45±0.05)%)

Andreas Korn

$B_s \rightarrow J/\psi \phi$ Likelihood

Unbinned likelihood fit, 25 free parameters

$$\mathcal{L} = \prod f_s \cdot \mathcal{F}_{sig}(m_i, t_i, \Omega_i, \sigma_m, \sigma_t, \Gamma_s, \Delta \Gamma_s, \phi_s, A_0, A_{\parallel}, A_S, \delta_{\parallel}, \delta_{\perp}, \delta_s, P(B|Q) - \mathcal{L}_s)$$

 $\frac{1}{2} |A_0(0)|^2 \left[(1 + \cos \phi_s) e^{-\Gamma_{\rm L}^{(s)}t} + (1 - \cos \phi_s) e^{-\Gamma_{\rm H}^{(s)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin \phi_s \right] \\
\frac{1}{2} |A_{\parallel}(0)|^2 \left[(1 + \cos \phi_s) e^{-\Gamma_{\rm L}^{(s)}t} + (1 - \cos \phi_s) e^{-\Gamma_{\rm H}^{(s)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin \phi_s \right] \\
\frac{1}{2} |A_{\perp}(0)|^2 \left[(1 - \cos \phi_s) e^{-\Gamma_{\rm L}^{(s)}t} + (1 + \cos \phi_s) e^{-\Gamma_{\rm H}^{(s)}t} \mp 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin \phi_s \right] \\
\frac{1}{2} |A_0(0)| |A_{\parallel}(0)| \cos \delta_{\parallel} \\
\left[(1 + \cos \phi_s) e^{-\Gamma_{\rm L}^{(s)}t} + (1 - \cos \phi_s) e^{-\Gamma_{\rm H}^{(s)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin \phi_s \right]$

• Signal
$$|A_{\parallel}(0)||A_{\perp}(0)|[\frac{1}{2}(e^{-\Gamma_{\mathrm{L}}^{(s)}t} - e^{-\Gamma_{\mathrm{H}}^{(s)}t})\cos(\delta_{\perp} - \delta_{\parallel})\sin\phi_{s} \\ \pm e^{-\Gamma_{s}t}(\sin(\delta_{\perp} - \delta_{\parallel})\cos(\Delta m_{s}t) - \cos(\delta_{\perp} - \delta_{\parallel})\cos\phi_{s}\sin(\Delta m_{s}t))]$$

 $\pm e^{-\Gamma_s t} (\sin \delta_{\perp} \cos(\Delta m_s t) - \cos \delta_{\perp} \cos \phi_s \sin(\Delta m_s t))]$ $\frac{1}{2} |A_S(0)|^2 \left[(1 - \cos \phi_s) e^{-\Gamma_{\rm L}^{(s)} t} + (1 + \cos \phi_s) e^{-\Gamma_{\rm H}^{(s)} t} \mp 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin \phi_s \right]$ $|A_S(0)||A_{\parallel}(0)|[\frac{1}{2} (e^{-\Gamma_{\rm L}^{(s)} t} - e^{-\Gamma_{\rm H}^{(s)} t}) \sin(\delta_{\parallel} - \delta_S) \sin \phi_s$ $\pm e^{-\Gamma_s t} (\cos(\delta_{\parallel} - \delta_S) \cos(\Delta m_s t) - \sin(\delta_{\parallel} - \delta_S) \cos \phi_s \sin(\Delta m_s t))]$ $\frac{1}{2} |A_S(0)||A_{\perp}(0)| \sin(\delta_{\perp} - \delta_S)$

 $\frac{1}{2} |A_{S}(0)| |A_{\perp}(0)| \sin(\theta_{\perp} - \theta_{S}) = \left[(1 - \cos \phi_{s}) e^{-\Gamma_{L}^{(s)} t} + (1 + \cos \phi_{s}) e^{-\Gamma_{H}^{(s)} t} \mp 2e^{-\Gamma_{s} t} \sin(\Delta m_{s} t) \sin \phi_{s} \right]$ $|A_{0}(0)| |A_{S}(0)| \left[\frac{1}{2} (e^{-\Gamma_{H}^{(s)} t} - e^{-\Gamma_{L}^{(s)} t}) \sin \delta_{S} \sin \phi_{s} + e^{-\Gamma_{s} t} (\cos \delta_{T} \cos(\Delta m_{s} t)) + \sin \delta_{T} \cos \phi_{T} \sin \phi_{s} + e^{-\Gamma_{s} t} (\cos \delta_{T} \cos(\Delta m_{s} t)) + \sin \delta_{T} \cos \phi_{T} \sin \phi_{s} + e^{-\Gamma_{s} t} (\cos \delta_{T} \cos \phi_{T} \cos \phi_{T} \sin \phi_{s}) + e^{-\Gamma_{s} t} (\cos \delta_{T} \cos \phi_{T} \sin \phi_{s}) + e^{-\Gamma_{s} t} (\cos \delta_{T} \cos \phi_{T} \sin \phi_{s}) + e^{-\Gamma_{s} t} (\cos \delta_{T} \cos \phi_{T} \sin \phi_{s}) + e^{-\Gamma_{s} t} (\cos \delta_{T} \cos \phi_{T} \sin \phi_{s}) + e^{-\Gamma_{s} t} (\cos \delta_{T} \cos \phi_{T} \sin \phi_{s}) + e^{-\Gamma_{s} t} (\cos \delta_{T} \cos \phi_{T} \sin \phi_{s}) + e^{-\Gamma_{s} t} (\cos \delta_{T} \cos \phi_{T} \sin \phi_{s}) + e^{-\Gamma_{s} t} (\cos \delta_{T} \cos \phi_{T} \sin \phi_{s}) + e^{-\Gamma_{s} t} (\cos \delta_{T} \cos \phi_{T} \sin \phi_{s}) + e^{-\Gamma_{s} t} (\cos \delta_{T} \cos \phi_{T} \sin \phi_{s}) + e^{-\Gamma_{s} t} (\cos \delta_{T} \cos \phi_{T} \sin \phi_{s}) + e^{-\Gamma_{s} t} (\cos \delta_{T} \cos \phi_{T} \sin \phi_{s}) + e^{-\Gamma_{s} t} (\cos \delta_{T} \cos \phi_{T} \sin \phi_{s}) + e^{-\Gamma_{s} t} (\cos \delta_{T} \cos \phi_{T} \sin \phi_{s}) + e^{-\Gamma_{s} t} (\cos \delta_{T} \cos \phi_{T} \sin \phi_{s}) + e^{-\Gamma_{s} t} (\cos \delta_{T} \cos \phi_{T} \sin \phi_{s}) + e^{-\Gamma_{s} t} (\cos \delta_{T} \cos \phi_{T} \sin \phi_{s}) + e^{-\Gamma_{s} t} (\cos \delta_{T} \cos \phi_{T} \sin \phi_{s}) + e^{-\Gamma_{s} t} (\cos \delta_{T} \cos \phi_{T} \sin \phi_{s}) + e^{-\Gamma_{s} t} (\cos \delta_{T} \cos \phi_{T} \sin \phi_{s}) + e^{-\Gamma_{s} t} (\cos \delta_{T} \cos \phi_{T} \sin \phi_{s}) + e^{-\Gamma_{s} t} (\cos \delta_{T} \cos \phi_{T} \sin \phi_{s}) + e^{-\Gamma_{s} t} (\cos \delta_{T} \cos \phi_{T} \sin \phi_{s}) + e^{-\Gamma_{s} t} (\cos \delta_{T} \cos \phi_{T} \sin \phi_{s}) + e^{-\Gamma_{s} t} (\cos \delta_{T} \cos \phi_{T} \sin \phi_{s}) + e^{-\Gamma_{s} t} (\cos \delta_{T} \cos \phi_{T} \sin \phi_{s}) + e^{-\Gamma_{s} t} (\cos \delta_{T} \cos \phi_{T} \sin \phi_{s}) + e^{-\Gamma_{s} t} (\cos \delta_{T} \cos \phi_{T} \sin \phi_{s}) + e^{-\Gamma_{s} t} (\cos \delta_{T} \cos \phi_{T} \sin \phi_{s}) + e^{-\Gamma_{s} t} (\cos \delta_{T} \cos \phi_{T} \sin \phi_{s}) + e^{-\Gamma_{s} t} (\cos \delta_{T} \cos \phi_{T} \sin \phi_{s}) + e^{-\Gamma_{s} t} (\cos \delta_{T} \cos \phi_{T} \sin \phi_{s}) + e^{-\Gamma_{s} t} (\cos \delta_{T} \cos \phi_{T} \sin \phi_{s}) + e^{-\Gamma_{s} t} (\cos \delta_{T} \cos \phi_{T} \sin \phi_{s}) + e^{-\Gamma_{s} t} (\cos \delta_{T} \cos \phi_{T} \sin \phi_{s}) + e^{-\Gamma_{s} t} (\cos \delta_{T} \cos \phi_{T} \sin \phi_{s}) + e^{-\Gamma_{s} t} (\cos \delta_{T} \cos \phi_{T} \sin \phi_{s}) + e^{-\Gamma_{s} t} (\cos \delta_{T} \cos \phi_{T} \cos \phi_{T} \cos \phi_{T}) + e^{-\Gamma_{s} t} (\cos \phi_{T} \cos \phi_{T} \cos \phi_{T} \cos \phi_{T}$

 $\pm e^{-\Gamma_s t} (\cos \delta_S \cos(\Delta m_s t) + \sin \delta_S \cos \phi_s \sin(\Delta m_s t))]$

 $\sin^2\psi_T\sin 2\theta_T\sin\phi_T$

 $2\cos^2\psi_T(1-\sin^2\theta_T\cos^2\phi_T)$

 $\sin^2 \psi_T (1 - \sin^2 \theta_T \sin^2 \phi_T)$

 $-\frac{1}{\sqrt{2}}\sin 2\psi_T \sin^2 \theta_T \sin 2\phi_T$

 $\sin^2\psi_T\sin^2\theta_T$

 $\frac{1}{\sqrt{2}}\sin 2\psi_T\sin 2\theta_T\cos\phi_T$

$$\frac{2}{3} \left(1 - \sin^2 \theta_T \cos^2 \phi_T \right)$$
$$\frac{1}{3} \sqrt{6} \sin \psi_T \sin^2 \theta_T \sin 2\phi_T$$

 $\frac{1}{3}\sqrt{6}\sin\psi_T\sin2\theta_T\cos\phi_T$

 $\frac{4}{3}\sqrt{3}\cos\psi_T\left(1-\sin^2\theta_T\cos^2\phi_T\right)$

Andreas Korn

PANIC!14, 28th August

$B_{s} \rightarrow J/\psi \phi$ results

