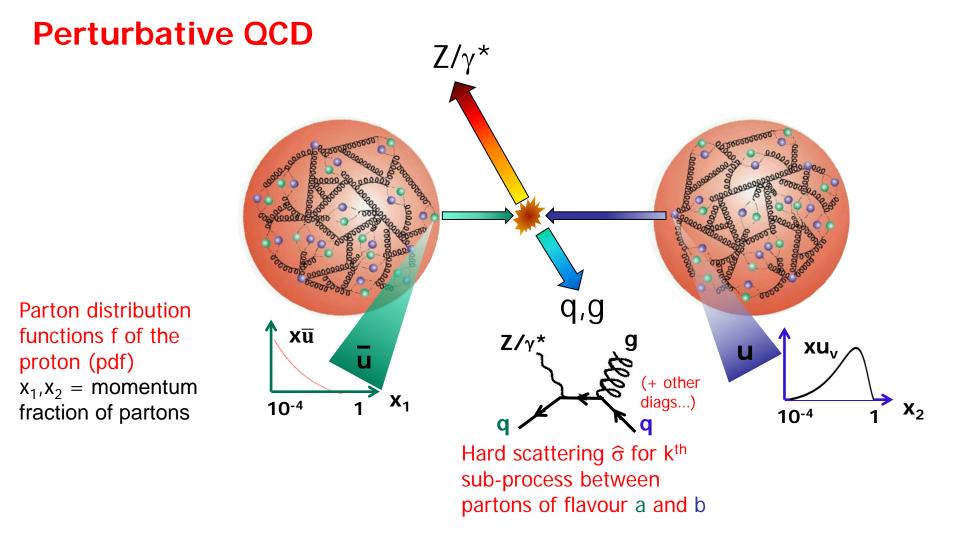
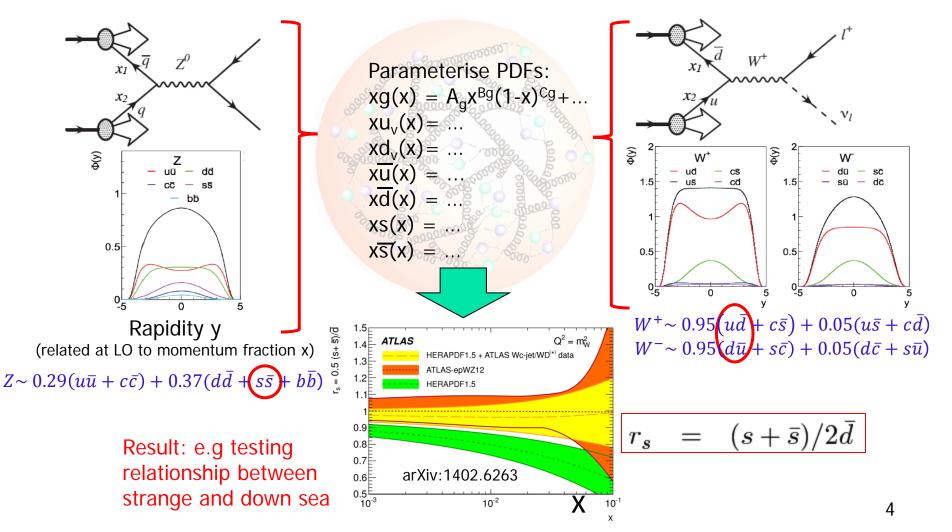

Measurements of vector-boson production in ATLAS and CMS

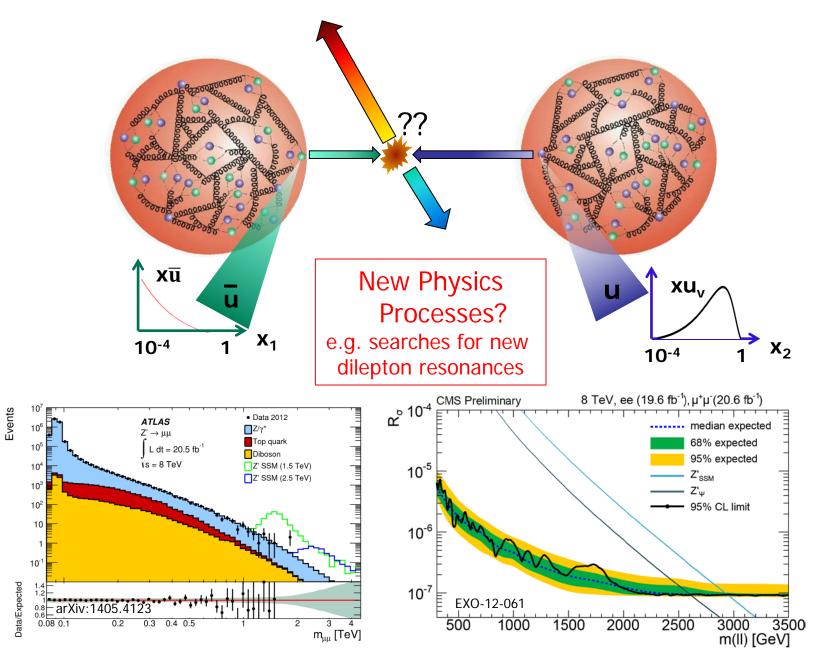

Manuella G. Vincter (Carleton University) on behalf of the ATLAS & CMS Collaborations at the LHC

Parton distribution functions f of the proton (pdf)

 x_1, x_2 = momentum fraction of partons


 $\sigma = \sum_{a,b,k} \int dx_1 dx_2 f_a(x_1, Q^2) \quad \widehat{\sigma}_{a,b,k}(x_a, x_b) \quad f_b(x_1, Q^2)$

Via hard scatter, can test perturbative QCD (pQCD) between initial, final states Z balances the hadronic system e.g. gluon hadronises/showers to jet of particles Have predictions up to NNLO 3

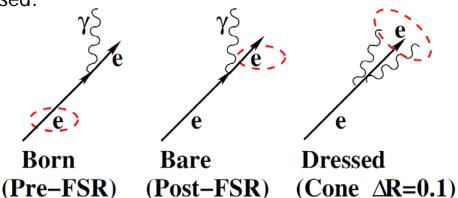

Thanks to: desy.de, hepdata.cedar.ac.uk

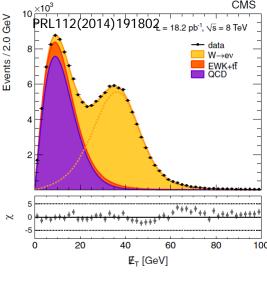
Global fits to extract PDFs

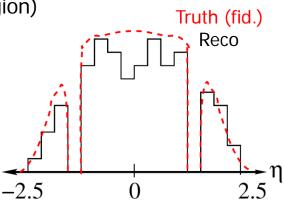
- DY production at LHC probes PDFs in the region $x \approx 10^{-4}$ - 10^{-1} and $Q^2 \approx 5x10^2$ - 10^6 GeV²
- Feed e.g. W^{\pm} , Z/γ^{*} , W+charm cross section information into global fits to extract PDFs
 - All data have differing sensitivity to different aspects of the proton's PDFs.
 - EW boson production sensitive to valence and sea quark distributions

Beyond the SM?

Recent measurements covered in this talk

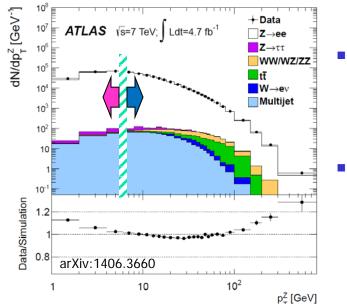

Some of the results in these recent papers/notes are presented here:


- p_T dependence of Z/γ^* production
 - CMS@8TeV: CMS PAS <u>SMP-13-013</u>
 - ATLAS@7TeV: <u>arXiv:1406.3660</u>, <u>Phys. Lett. B720 (2013) 32</u>
- $m_{\ell\ell}$ dependence of Z/γ^* production
 - CMS@7 and 8TeV: <u>JHEP 12 (2013) 030</u>, CMS PAS <u>SMP-14-003</u>
 - ATLAS@7TeV: JHEP 06 (2014) 112 (low mass), Phys. Lett. B 725 (2013) 223 (high mass)
- W, Z inclusive cross sections at 8TeV
 - CMS: <u>PRL 112 (2014) 191802</u>
- W charge asymmetry, W+charm and QCD analysis
 - CMS@8TeV: <u>PRD 90 (2014) 032004</u>
 - ATLAS@7TeV: <u>JHEP05 (2014) 068</u>



Characteristics of leptonic decays of W,Z and their measurements

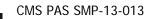
- W: prompt, energetic, isolated charged ℓ + v giving rise to E_T^{miss}
- E_T^{miss} used as a discriminant against background
- Z: 2 prompt, energetic , isolated charged ℓ , same flavour, opposite sign
- Two-lepton invariant mass defines low-, high-mass and, on-peak
- Leptons reconstructed within pseudorapidity η and transverse momentum p_T ranges afforded by the detector (defines fiducial region)
- Measurements reported in fiducial or full phase-space
- Use simulation to unfold data from "reconstruction" to "truth" level
- Correction factor: reconstruction \rightarrow truth level in fiducial region
- Acceptance: truth fiducial region \rightarrow full truth phase-space Cross-section measurement reported at one or more levels:
- Born, bare, dressed:



p_T dependence of Z/ γ^* production

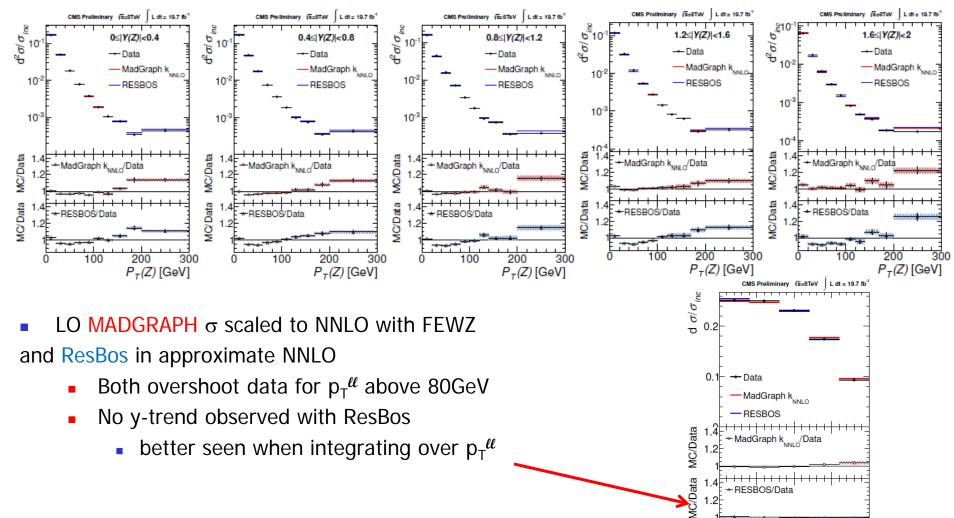
Near Z pole (ATLAS: $m_{\ell\ell}=66-116 \text{GeV}@\sqrt{s}=7 \text{TeV}$, CMS: $m_{\ell\ell}=81-101 \text{GeV}@\sqrt{s}=8 \text{TeV}$):

- $d\sigma/dp_T^{\ell}$, $d^2\sigma/dp_T^{\ell}d|y_{\ell}|$
- Low p_T^{*u*}: region of ISR and intrinsic k_T of partons
- modeled through softgluon resummation or parton showers (PS)
 - e.g. ResBos
 (NLO,NNLO)+NNLL


- High p_T^{*u*}: region dominated by radiation of high p_T gluons
 - Sensitive to gluon PDF

Modeled with fixed-order calculations like FEWZ @NLO,NNLO & DYNNLO (with NLO,NNLO EW corrs)

Measurements also compared with various generators (for a given PDF)


- MADGRAPH with k_{NNLO} with 0-4 additional jets interfaced to PYTHIA6
- PYTHIA & HERWIG: PS for low p_T^{ℓ} , include $O(\alpha_s)$ m^x element for 1 hard parton
- MC@NLO & POWHEG: NLO QCD m^x element into PS frameworks of HERWIG or PYTHIA
- ALPGEN & SHERPA: tree-level m^x elements for generation of multiple hard partons in association with the boson

Note: precise CMS measurement of inclusive cross section for $m_{\ell\ell}=60-120 \text{GeV}@\sqrt{s}=8 \text{TeV}$ $\sigma(pp \rightarrow ZX) \times \mathcal{B}(Z \rightarrow \ell^+ \ell^-) = 1.15 \pm 0.01(\text{stat}) \pm 0.02(\text{syst}) \pm 0.03(\text{lum}) \text{ nb}$ PRL112(2014)191802

 $CMS \ p_T{}^\ell\!\ell$

($1/\sigma^{fid}$) $d^2\sigma^{fid}/dp_T^{\ell} d|y_{\ell}| @$ born level (5 bins of $|y_{\ell}|$, $\mu\mu$ only)

9

1.5

|Y(Z)|

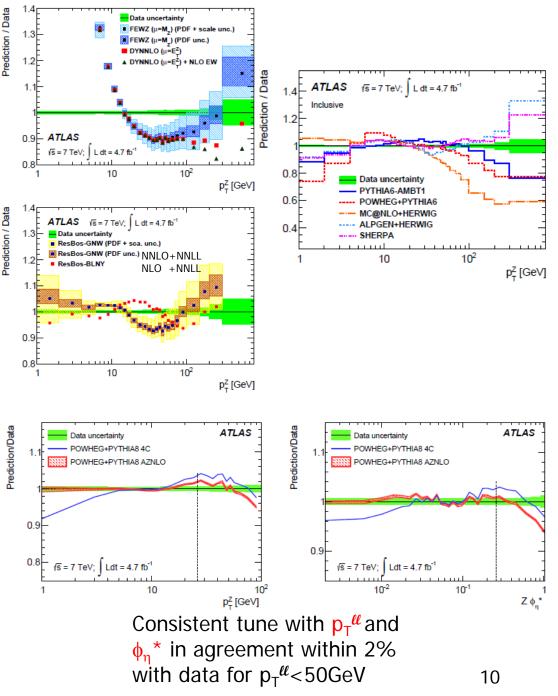
0

0.5

arXiv:1406.3660 Phys. Lett. B720 (2013) 32

ATLAS p_T^{*l*}

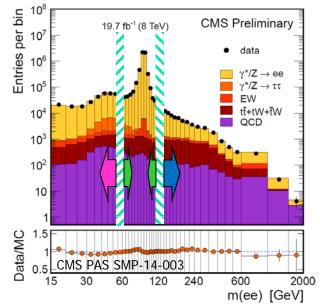
(1/σ^{fid}) dσ^{fid}/dp_T^{ℓℓ} @ born level, inclusively in y_{ℓℓ} (ee and μμ)
 FEWZ,DYNNLO (top), ResBos (bot)

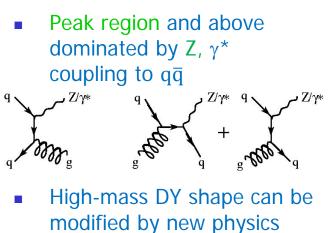

Comparison to various generators, inclusive (and in 3 $|y_{\ell\ell}|$ bins not shown)

Parton-shower tunes: determine sensitivity of $d\sigma/dp_T^{\ell\ell}$ to PS models

Include measurement of φ_η*, highly correlated to p_T^Z but depends on direction of tracks (better measured than momenta)

 $p_T^{Z} {}_{\approx} m_Z \phi_{\eta}^{*}$


- e.g. compare POWHEG+PYTHIA8 new tune AZNLO with base tune 4C
 - Primordial k_T and ISR cut-off have been tuned

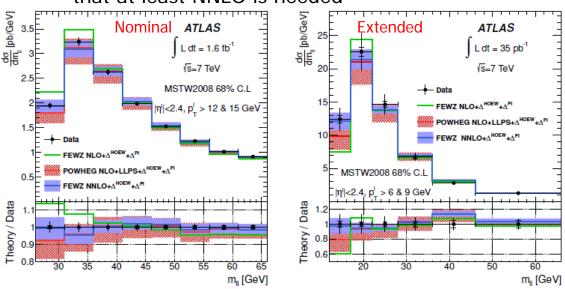


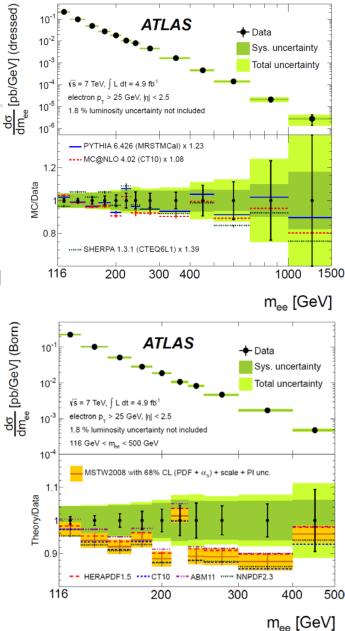
$m_{\ell\ell}$ dependence of Z/ γ^* production

CMS: $m_{\ell\ell} = 15-2000 \text{ GeV} @ \sqrt{s} = 7,8 \text{ TeV}$, ATLAS: $m_{\ell\ell} = 12-1500 \text{ GeV} @ \sqrt{s} = 7 \text{ TeV}$

- $d\sigma/dm_{\ell\ell}$, $d^2\sigma/dm_{\ell\ell} d|y_{\ell\ell}|$
- Low-mass DY: dominated by EM coupling of γ* to qq̄
 q̄
 γ*
- Different sensitivity to u, d-type qq than on peak

Measurements compared to FEWZ, generators, including higher-order EW corrections and γ -induced interactions (PI), and various PDFs

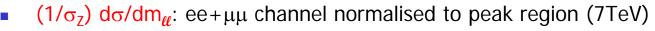

- FEWZ3.1 at NLO, NNLO
- POWHEG+PYTHIA6, corrected to NNLO with FEWZ
- POWHEG NLO calculation matched LL-resummed parton showers
- PYTHIA6, MC@NLO, SHERPA (with up to 3 additional partons)
- PDFs: MSTW2008, HERADPDF1.5, CT10, CT10W, AMB11, NNPDF2.1, 2.3, JR09, ABKM09, ...



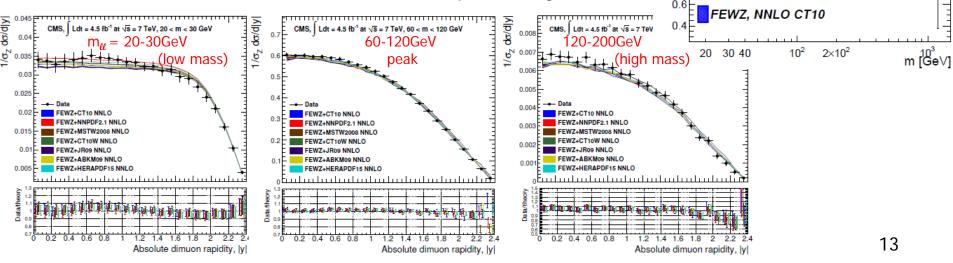
High mass: Phys. Lett. B 725 (2013) 223 Low mass: JHEP 06 (2014) 112

ATLAS $m_{\ell\ell}$

- High-mass DY in ee channel: born, dressed dofid/dm_{ll}
 - Compare to 3 generators (norm. to total # of data evts)
 - Measured compared to FEWZ NNLO with NLO EW corrs.
 - Most PDFs disagree with predictions at mid-mass
 - MSTW2008 uncertainty from PDF, α_{s} , scale, PI
- Low-mass DY in ee+ $\mu\mu$ (nominal) and use of 2010 data to go down to $m_{\ell\ell} = 12 \text{ GeV}$ in $\mu\mu$ (extended): born $d\sigma^{fid}/dm_{\ell\ell}$ Comparisons to predictions, including EW corr and PI
 - χ^2 disagreement of NLO FEWZ to data at low m_{*u*} implies that at least NNLO is needed



12



7TeV: JHEP12(2013)030 8TeV: CMS PAS SMP-14-003

CMS $m_{\ell\ell}$

- Comparisons including LO and NLO EW corrections
- Dimuon (1/σ_z) dσ/d|y_{ℓℓ}| normalised to peak region available in 6 m_{ℓℓ} bins (3 shown) compared to FEWZ using various PDF sets
 - Test compatibility of PDFs with low-to-high-mass DY
- Ratio of born-level (1/σ_Z) dσ/dm_ℓ at 8TeV to 7TeV in ee+μμ channels available in 6 m_ℓ bins (inclusive shown) compared to NNLO FEWZ obtained with CT10 NNLO PDF
 - Shape driven by \sqrt{s} and x dependencies of PDFs
 - 1 near peak (hard scattering cancels), high mass (x>0.3) PDF at smaller √s fall steeper at large x

CMS

 $\gamma^*/Z \rightarrow ee, \mu\mu$

Ldt = 4.8 fb⁻¹ ee, Ldt = 4.5 fb⁻¹ µµ at √s = 7 TeV

EWZ, NNLO CT10+LO EW

FEWZ, NNLO CT10+NLO EV

FEWZ, NNLO CT10+LO EV

CMS Preliminary

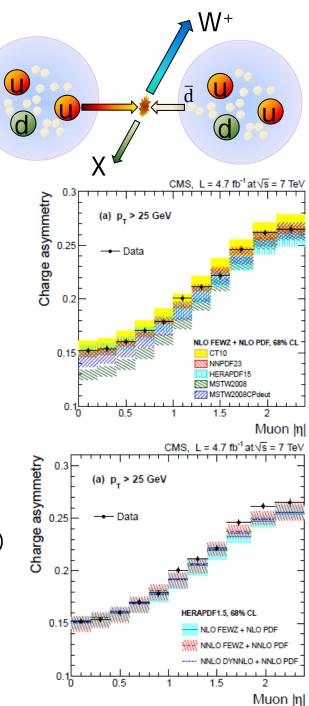
Data

19.7 fb⁻¹ ee, 19.7 fb⁻¹ µµ (8 TeV),

4.8 fb⁻¹ ee, 4.5 fb⁻¹ μμ (7 TeV)

dσ/dm [GeV

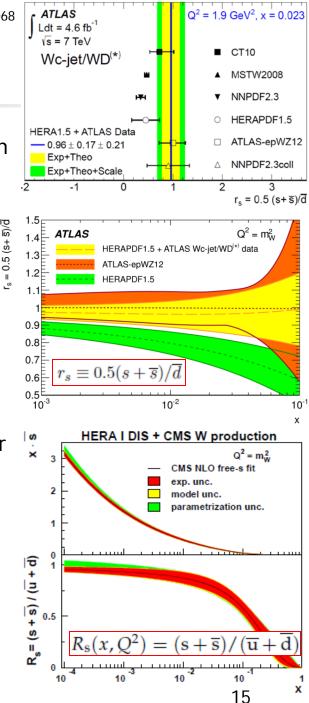
 $1/\sigma_2 d\sigma/dm(8)$


arXiv:1312.6283 PRL112(2014)191802

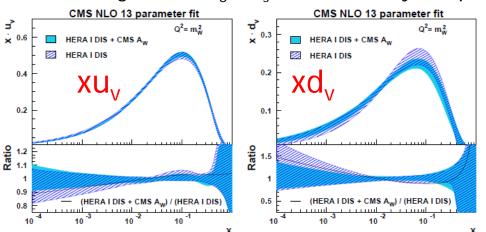
CMS W-charge asymmetry

- Dominant W production mechanisms at LHC:
 - valence+sea antiquark: $d\overline{u} \rightarrow W^-$ and $ud \rightarrow W^+$
 - W⁺, W⁻ production asymmetry due to valence content
 - R_{W^+/W^-} 1.39 ± 0.01(stat) ± 0.02(syst) (at 8TeV)
- Lepton charge asymmetry vs. pseudorapidity η can provide information on PDFs:

$$\mathcal{A}(\eta) = \frac{\frac{\mathrm{d}\sigma}{\mathrm{d}\eta}(\mathrm{W}^+ \to \ell^+ \nu) - \frac{\mathrm{d}\sigma}{\mathrm{d}\eta}(\mathrm{W}^- \to \ell^- \overline{\nu})}{\frac{\mathrm{d}\sigma}{\mathrm{d}\eta}(\mathrm{W}^+ \to \ell^+ \nu) + \frac{\mathrm{d}\sigma}{\mathrm{d}\eta}(\mathrm{W}^- \to \ell^- \overline{\nu})}$$


- d/u ratio and sea antiquarks (including strangeness)
- CMS measurement at 8TeV with $W \rightarrow \mu \nu$ and $p_T^{\ell} > 25,35 \text{GeV}$ (probe different bkg compositions)
 - Good agreement with CT10, NNPDF2.3, HERAPDF1.5
 - Less so with MSTW2008 $|\eta| < 1$ (MSTW2008CPdeut better)
 - Comparable concordance with NNLO FEWZ and DYNNLO
 - Somewhat low compared to data at high $|\eta|$

PDF extraction in the **HERAFITTER** framework


ATLAS: JHEP05 (2014) 068 CMS: arXiv:1312.6283

- Use HERA inclusive DIS data with LHC W data to better constrain PDFs, in particular valence and strange
- ATLAS: HERA + [W+charm]
 - Repeat HERAPDF1.5 fit making $f_s = \overline{s}/(\overline{d} + \overline{s})$ ~free while constraining other params to HERAPDF1.5 fit results
 - $r_s \equiv 0.5(s+\overline{s})/\overline{d}$ ~1 at starting scale Q²=1.9GeV²
- CMS: HERA + $\mathcal{A}(\eta)$ + [W+charm]
 - Adding $\mathcal{A}(\eta)$ improves valence precision, changes shape
 - Free-s fit where dbar and sbar parameterised separately

• $R_s = (s + \overline{s})/(\overline{u} + \overline{d})$, just below 1

Within framework, ATLAS&CMS strange fraction definition similar at starting scale... R_s & r_s can be directly compared: ~consistent

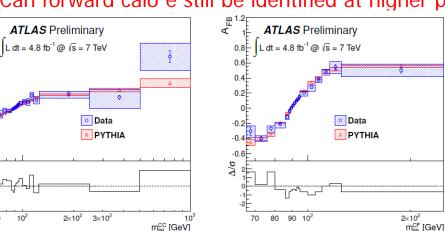
Vector-boson production at the LHC is interesting on so many levels

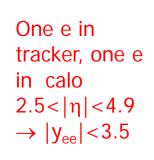
Probe of

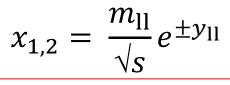
- pQCD via the hard scattering process
- PDFs, particularly valence and poorly-known strange sea
- $m_{\ell} |y_{\ell}|, p_{T}^{\ell}$ dependence of Z/γ^{*} production, W charge asymmetry: CMS and ATLAS
- Underlying foundation of many new physics searches
 - e.g. can help us to better understand backgrounds and PDFs for LHC at higher energy/luminosity

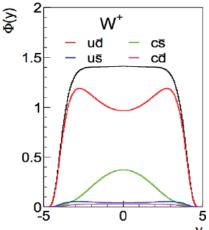
ADDITIONAL MATERIAL

Future prospects: benefits of extending the tracking coverage?


- Tracking coverage at ATLAS and CMS stops at $|\eta| \sim 2.5$
- Benefits for W,Z production to extend the coverage to $|\eta| \sim 4 5$?
 - Extension of Bjorken-x coverage
 - Probe of valence PDFs


0.8


Р

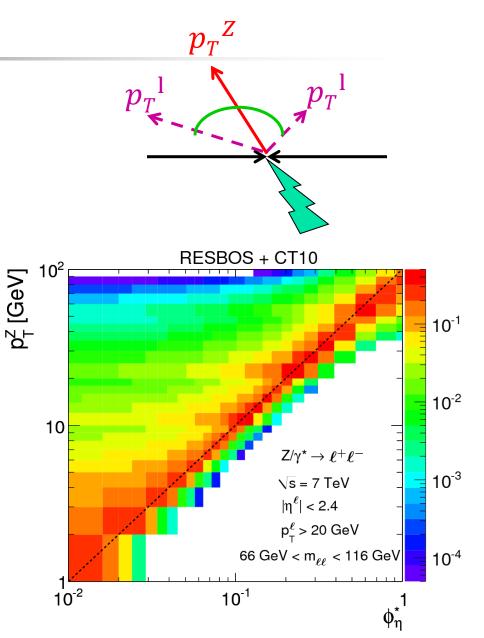

- new physics at large $m_{\boldsymbol{\ell}\boldsymbol{\ell}}$ depend on PDFs at high x
- $Z \rightarrow \ell \ell$ forward-backward asymmetry: $sin^2 \theta_W$
 - Sign for F,B measured with respect to incoming quark direction
 - Dilution of info in pp collisions: q comes from which p?
 - Quark direction misID decreases with increasing $\ell\!\ell$ boost
 - e.g. ATLAS extending range where electron is identified
 - Lower asymmetry dilution \rightarrow increased sensitivity to $sin^2\theta_W$
 - Can forward calo e still be identified at higher pileup?

Both e in tracker volume $|\eta| < 2.47$ $\rightarrow |y_{ee}| < 2.4$

Z cross section vs. ϕ_n^*

• A better variable to probe low-p_T Z: ϕ_{η}^{*}

 $\phi_{\eta}^* \equiv \tan(\phi_{\mathrm{acop}}/2) \cdot \sin(\theta_{\eta}^*)$


where $\phi_{\rm acop} \equiv \pi - \Delta \phi$, (ϕ between 2 leptons)

and $\cos(\theta_{\eta}^{*}) \equiv \tanh[(\eta^{-} - \eta^{+})/2]$ (η between 2 leptons)

Probes same physics as Z p_T but with better precision

 $p_T^{Z} m_Z \phi_{\eta}^{*}$

- Depends uniquely on direction of lepton tracks (which is better measured than their momenta)
- Significant improvement in the understanding of electron track parameters in 2011/2012 really helped this analysis!

