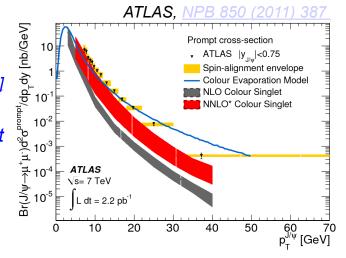
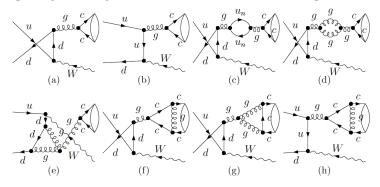

Measurement of the W + prompt J/ ψ production cross section in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector [JHEP 04 (2014) 172]

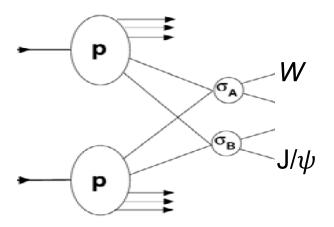


Heavy Quarkonium (QQbar) Production

- Production of heavy charmonium (ccbar) in pp and ppbar collisions
 - Hard to calculate due to small charm quark mass
 - Phenomenological models fail to describe properties $(d\sigma/dp_T, ccbar polarization, etc.)$
- Models
 - Color singlet process (CS): charmonium quantum numbers determined by original quarks
 - Color octet process (CO): charmonium quantum numbers determined when ccbar system evolves into quarkonium state through radiation of soft gluons
- ATLAS measurements of QQbar production
 - $\psi(2S)$ cross section [1407.5532]
 - χ_{cJ} production [JHEP 07 (2014) 154]
 - Incl. Y(nS) diff. cross sections and ratios [PRD 87 (2013) 052004]
 - Y(1S) fiducial production cross section [PLB 703 (2011) 428]
 - differential cross sections of inclusive, prompt and non-prompt J/ψ production [NPB 850 (2011) 387]
- Measurement of W + prompt J/ψ production could shed further light on heavy quarkonium production mechanisms

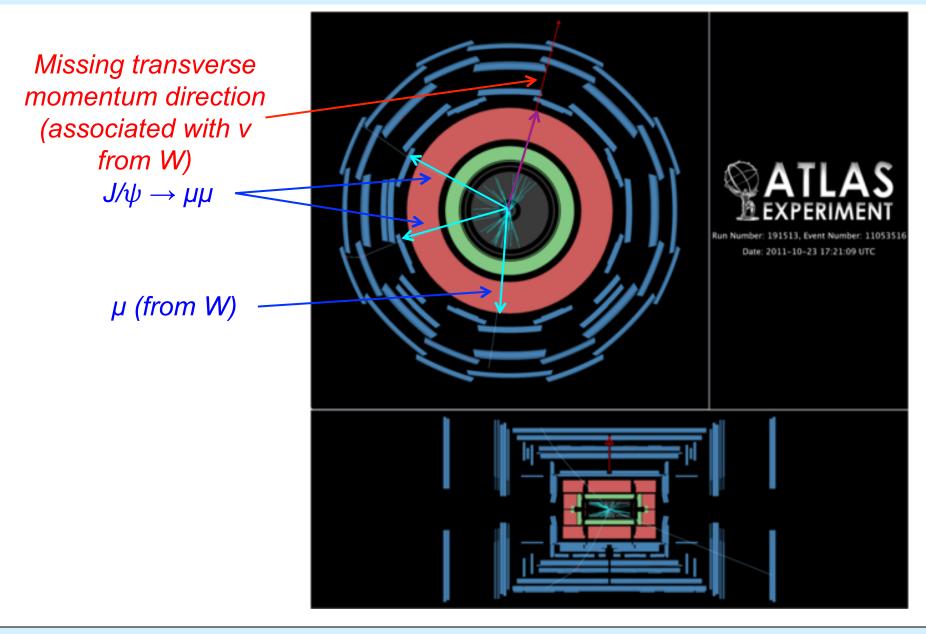

Single and Double Parton Scattering (SPS & DPS)

- Single Parton Scattering (SPS)
 - SPS involves a single parton from each proton
- Double Parton Scattering (DPS)
 - Mechanism with two hard scattering processes (A and B) in a single pp collision
 - The W is produced in one hard scatter and the J/ ψ in the other

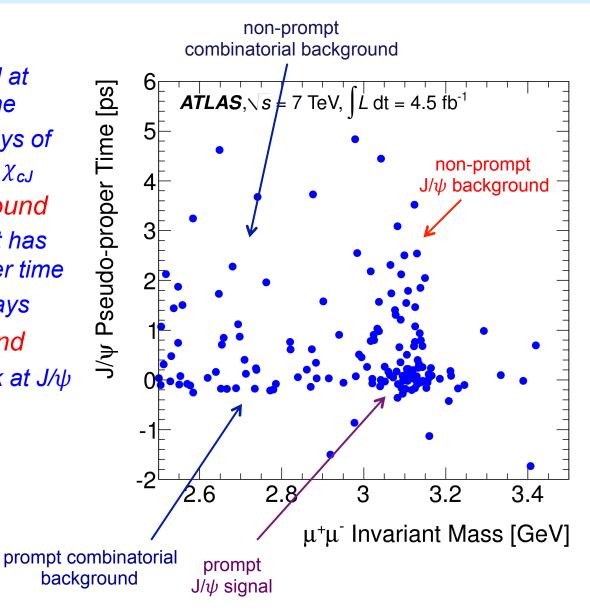

SPS and DPS contributions to W + prompt J/ ψ production could (in principle) be distinguished statistically based on event topology

- Pile up (background)
 - W and J/psi are produced in different pp collisions in the same bunch crossing

Some low-order Feynman diagrams for SPS production of W + prompt charmonium [Song, Zhang, Ma, <u>PRD 83 (2011) 014001</u>]


Double Parton Production

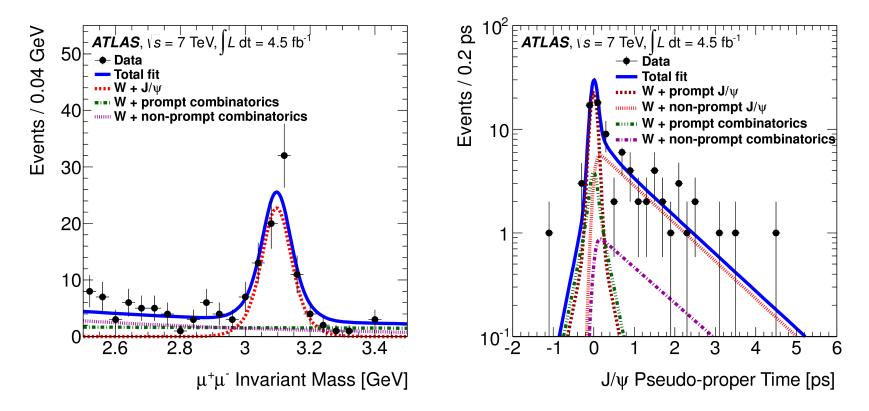
Event Selection


- 2011 ATLAS data set
 - 4.5 fb⁻¹ of pp collisions at $\sqrt{s} = 7$ TeV
- Single muon trigger $p_T > 18 \text{ GeV}$
- $W \rightarrow \mu v$
 - Isolated muon p_T > 25 GeV and $|\eta| < 2.4$
 - Missing transverse energy > 20 GeV
 - Transverse mass of $W m_T^W > 40 \text{ GeV}$
 - $-\mu$ consistent with primary vertex
- $J/\psi \rightarrow \mu\mu$
 - $p_T^{\mu} > 3.5$ (2.5) GeV with $|\eta^{\mu}| < 1.3$ ($|\eta^{\mu}| > 1.3$)
 - Di-muon pair consistent with common vertex (z_0 within 10 mm of PV)
 - $2.5 < m_{\mu\mu} < 3.5 \text{ GeV}$
 - $8.5 < p_T^{J/\psi} < 30 \text{ GeV and } |y_{J/\psi}| < 2.1$
- Z veto
 - Events with a di-muon mass within 10 GeV of Z mass are removed

W + prompt J/ψ Candidate Event

J/ψ Candidates

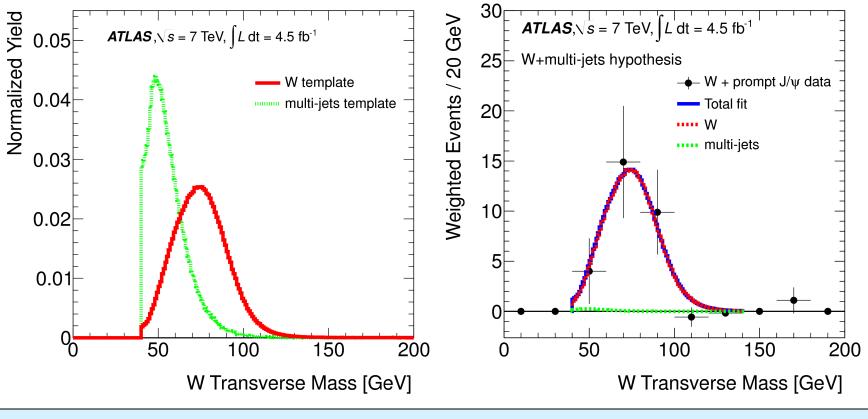
- Prompt J/ ψ signal
 - Peaks at J/ψ mass and at zero pseudo-proper time
 - Includes J/ ψ from decays of excited charmonia e.g. χ_{cJ}
- Non-prompt J/ψ background
 - Peaks at J/ψ mass, but has non-zero pseudo-proper time
 - J/ψ from b hadron decays
- Combinatorial background
 - μμ mass does not peak at J/ψ mass



Extraction of prompt J/ψ Component

- Two-dimensional maximum likelihood fit in µµ invariant mass and pseudo-proper time
 - Mass PDFs
 - Signal: Gaussian
 - Combinatorial background: Exponential
 - Pseudo-proper time PDFs
 - Prompt: Gaussian \otimes (δ function + double-sided Exponential)

Probability Density Function (PDF) shape parameters determined with a large inclusive J/ψ data sample


W + Prompt J/ψ Signal and Background Yields

Yields from two-dimensional fit			
Process	Barrel	Endcap	Total
Prompt J/ψ	$10.0^{+4.7}_{-4.0}$	$19.2^{+5.8}_{-5.1}$	$29.2^{+7.5}_{-6.5}(*)$
Non-prompt J/ψ	$27.9^{+6.5}_{-5.8}$	$13.9^{+5.3}_{-4.5}$	$41.8^{+8.4}_{-7.3}$
Prompt background	$20.4^{+5.9}_{-5.1}$	$18.8^{+6.3}_{-5.3}$	$39.2^{+8.6}_{-7.3}$
Non-prompt background	$19.8^{+5.8}_{-4.9}$	$19.2^{+6.1}_{-5.1}$	$39.0^{+8.4}_{-7.1}$
<i>p</i> -value	8.0×10^{-3}	$1.4 imes 10^{-6}$	$2.1 imes 10^{-7}$
Significance (σ)	2.4	4.7	5.1
(*) of which 1.8 ± 0.2 originate from pileup	First observation		

 p-value and significance of W+ prompt J/ψ signal determined from probability that (S+B)/B likelihood ratio in background-only pseudoexperiments fluctuates up to observed value in data or higher

Prompt J/ψ + *Non-W Multi-jet Background Yields*

- Extract m_T^W from prompt J/ ψ signal using _SPlot
- Fit m_T^W distribution to
 - W signal template
 - Data-driven multi-jet template
- 0.1 ± 4.6 multi-jet events; multi-jet fraction < 0.31 at 95% C.L.

Other Backgrounds

- *W* + *b*
 - Rejected as non-prompt from likelihood fit
- $B_c \rightarrow J/\psi \ \mu \ v \ X$
 - All candidate events have $3-\mu$ mass above 12 GeV [m(B_c) = 6.28 GeV]
- *Z* + *jets*
 - Require for all oppositely-charged muon pairs $|m_{\mu\mu} m_Z| > 10 \text{ GeV}$
- Pile-up

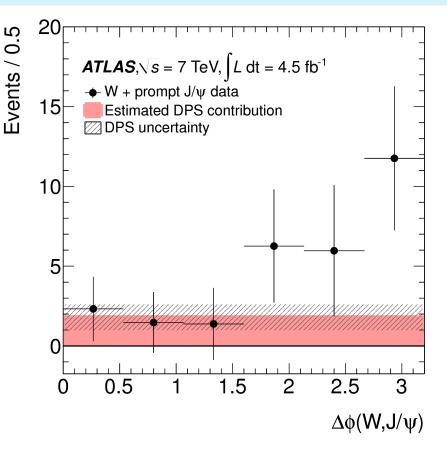
$$N_{pileup} = N_{extra} \times P_{J/\psi} \times L \times \sigma_{pp \to W} = 1.8 \pm 0.2$$

- N_{extra} = extra pp collisions per event close enough to primary vertex to pass selection
- $P_{J/\psi}$ = probability to produce a J/ψ in given $y^{J/\psi}$ and $p_T^{J/\psi}$ range

Double Parton Scattering

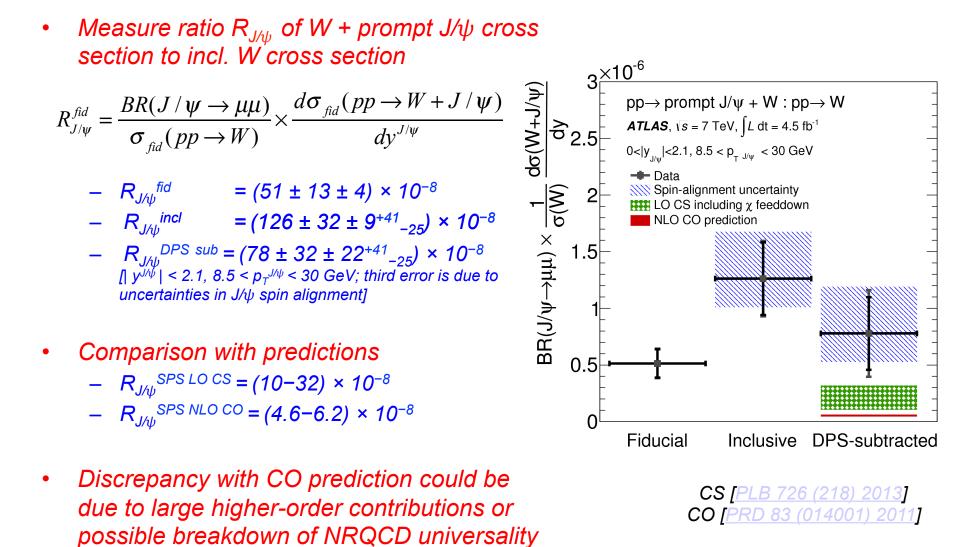
- W and J/ψ originate from different parton interactions in the same pp collision
 - Estimate DPS W + prompt J/ψ yield from W yield and probability that a second scattering produces a J/ψ

$$N_{DPS} = P_{J/\psi|W} \times N_{W}$$

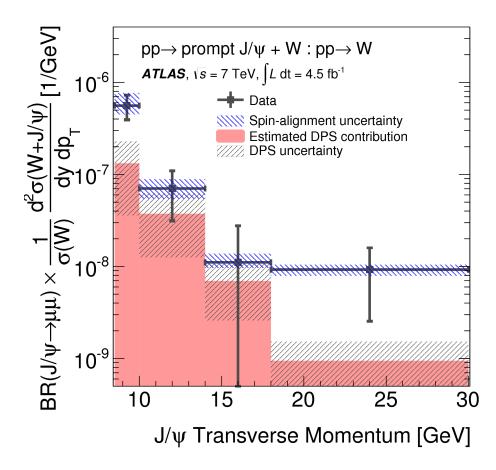

- $P_{J/\psi|W}$ calculated from incl. J/ψ cross section and effective cross section for a second hard scattering

$$P_{_{J/\psi|W}} = \sigma_{_{J/\psi}} / \sigma_{_{eff}}$$

 σ_{eff} assumed independent of scattering process and calculated from W (→ I v) + 2-jet events [ATLAS. NJP 15 (2013) 033038]


•
$$\sigma_{eff} = (15 \pm 3 + 5_{-3}) mb$$

DPS events account for 10.8 ± 4.2 events in the signal yield


 $\Delta \phi$ (between W and J/ ψ) distribution consistent with DPS estimate (expect DPS flat in $\Delta \phi$, and SPS to peak near π)

W + prompt J/ψ Cross Section

$p_T^{J/\psi}$ Dependence of Cross Section Ratio

- Dependence of $R_{J/\psi}^{incl}$ and $R_{J/\psi}^{DPS}$ are shown as function of $p_T^{J/\psi}$
 - SPS appears to be dominant contribution at low $p_T^{J/\psi}$

Conclusions

- The associated W + J/ψ production measurement [ATLAS, JHEP 04 (2014) 172] is the latest in a series of ATLAS measurements of the production of heavy quarkonium in pp collisions
 - First observation of associated W + J/ψ production
 - DPS scattering process estimated to contribute at the level of 40% to the signal yield
 - Measured inclusive SPS contribution larger than LO CSM and NLO CO predictions, but consistent at the 2σ level
- ATLAS will publish a few more heavy quarkonium measurements on Run 1 data (at 7 and 8 TeV)