

The LHCb trigger and its upgrade

PANIC 2014, Hamburg

Christian Linn, CERN

on behalf of the LHCb Collaboration

single arm forward spectrometer designed for precision measurements of b- and c-hadrons (CP violation, rare decays, heavy flavour production)

→ acceptance coverage $2 < \eta < 5$

- \succ VELO: excellent decay time resolution ~ 45 fs -> good separation of B vertices
- > Tracking System: good momentum ($\Delta p / p = 0.4 0.6 \%$) and mass resolution
- ➢ Particle Identification: good K π separation (~95 % efficient for ~ 5 % mis-id) and muon identification (~97 % efficient for 1-3 % mis-id)

- \blacktriangleright B[±] mass ~ 5.28 GeV
- \succ daughter p_T O(1 GeV)
- > Flight distance ~ 1 cm (τ ~ 1.5 ps)
- Common signature: detached μμ

- \blacktriangleright D⁰ mass ~ 1.86 GeV
- \succ sizeable daughter p_T
- > flight distance ~ 4 mm (τ ~ 0.4 ps)
- ➤ Can be produced in B-decays

-> triggering on displaced vertices with high p_T tracks

C. Linn (CERN) | LHCb trigger

Two level trigger:

L0 hardware trigger -> reduces rate to 1 MHz (maximum rate imposed by front-end electronics)

HLT software trigger -> reduces rate to ~ 5 kHz C++ based program running in Event Filter Farm

1st stage (HLT1): partial event reconstruction + inclusive selections

2nd stage (HLT2):

full event reconstruction + several inclusive and exclusive selections

Reconstructs muon track segments

Search for straight lines of hits in five muon chambers pointing towards interaction point

–> momentum resolution of ~ 20 %

 $B \rightarrow J/\Psi K^+$

€^{TOS} / 100% Triggers: -LHCb preliminary single muon $p_T > 1.76 \text{ GeV}$ \succ di-muon $p_T 1 \ge p_T 2 \ge (1.6 \text{ GeV})^2$ 0.8 0.6 Total muon rate $\sim 400 \text{ kHz}$ 0.4 LOMuon **L0DiMuon** L0Muon OR L0DiMuon 0.2 integrated efficiency $\sim 90 \%$ 5 10 15 20 $p_{T}[\text{GeV/}c]$ efficiencies after offline selection / measured in data driven way

Requires calorimeter clusters with minimum transverse energy:

$$E_T = \sum_i E_i \sin \theta_i$$

Hadron trigger:

- \succ ECAL + HCAL clusters
- $E_{\rm T} > 3.7 \, {\rm GeV}$
- ➢ Rate: ~ 450 kHz

Electron / Photon trigger:

- \succ PS + ECAL
 - (SPD discriminates between e / γ)
- $\geq E_T > 3.0 \text{ GeV}$
- > Rate: $\sim 150 \text{ kHz}$
- (~ 80 % efficient for radiative B –> X γ decays)

- Reconstruction of track segments in the vertex detector
- Select tracks with high IP or matched with hits in muon chambers
- > Extrapolation to main tracking stations using same tracking algorithm than offline

Inclusive beauty and charm trigger:

- \succ single track with requirements on p_T and IP
- dominant trigger for most channels without leptons
- > output rate of ~ 58 kHz

Inclusive muon triggers:

- single + dimuon triggers
- \blacktriangleright requirements on p_T , IP and di-muon mass
- > output rate of ~ 14 kHz

- > Full event reconstruction for all tracks with $p_T > 300 \text{ MeV}$
- Composition of inclusive + exclusive selections

Several inclusive and exclusive selections:

C. Linn (CERN) | LHCb trigger

LHCb **HLT2** Topological lines

Sλ

Topo N-body

output rate is $\sim 2 \text{ kHz}$

р

h_{miss}

Inclusive trigger for b-decays to 2, 3 or 4 charged tracks

- fast and robust implementation using BDT \succ
- corrected mass is important input variable

 $m_{corr} = \sqrt{m^2 + |p_T^{miss}|^2 + p_T^{miss}}$

allows also to select partially

C. Linn (CERN) | LHCb trigger

HLT2 Inclusive + exclusive trigger lines

CERN

Inclusive dimuon triggers:

- Prompt and detached dimuon lines
- muon ID identical to offline
- \succ total output rate ~ 1kHz

Exclusive charm triggers:

- based on tight cuts on invariant mass
- \succ Total charm output rate ~ 2 kHz
- ➤ only D* → D⁰ π selected inlcusively

Running at $\sqrt{s} = 13$ TeV:

- \rightarrow 15 % increase of σ_{inel}
- -> 20 % increase of multiplicity per collision
- $\rightarrow 60$ % increase of σ_{bb}

With bunch spacing of 25 ns (2200 bunches) and target luminosity of $4x10^{32}$ cm⁻²s⁻¹

-> 1.1 visible collisions per bunch crossing (compared to 1.7 at 8 TeV)

-> slightly simper events than in 2012 but more beauty and charm

LHCb 2015 Trigger Diagram

More signal means trigger needs to be more selective:

-> make trigger more compatible to offline selection

Requirements:

- > alignment and detector calibration already in HLT
- offline like RICH PID
- -> event buffering is moved after HLT1 and used to run calibration
- -> full offline-like selection in HLT2

Additional resources:

CPU in Event Filter Farm will be doubled buffer storage: 1 PB -> 4 PB

Tracking:

- full VELO tracking in HLT1 all tracks with p_T > 500 MeV extrapolated to tracking stations
- ➤ tracks from HLT1 reused in HLT2
- updated alignment constants and offline-like tracking in HLT2

TurboStream:

- Signal rates start to become more and more challenging (especially for charm)
- Idea: Only particles found by trigger are used to perform analysis
 (smaller event size allows higher output rate)

-> these things become even more crucial for the upgrade

- > Instantaneous luminosity: $L = 2 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$
- > Average number of interaction per bunch crossing v = 7.6
- > 30 MHz inelastic collision rate
- ➢ Planed to collect a total sample of 50 fb⁻¹

LHCB-TDR-013 LHCB-TDR-014 LHCB-TDR-015

+ new photo detectors for RICH

For upgrade conditions in LHCb acceptance:

6x higher b-hadron rate, 5x higher charm rate, 4x higher rate of light, long-lived particles

Rates as a function of decay time cut for part. reco. candidates rate (MHz) LHCb Simulation 1.2 eautv hadron candidates narm hadron candidates light, long-lived candidates 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 decay time cut (ps)

Rates as a function of pT cut for part. reco. candidates

Output rate (for $p_T > 2.0 \text{ GeV}$, $\tau > 0.2 \text{ ps}$) in GBs⁻¹:

	b-hadrons	c-hadrons	long-lived hadrons	
RUN1	0.9	3.3	1.1	
Upgrade	27	80	26	(100 kB

New Challenge: discriminate between different similar signals -> trigger must be very flexible and as close as possible to offline selection LHCb Upgrade trigger

Readout at full 30 MHz collision rate + fully software based trigger:

Software based Low Level Trigger (LLT) replaces L0:

- uses limited information from calorimeters and muon stations
- ➤ can reduce the input rate to HLT by factor 2

chosen as backup in face of changing beam condition

Event Filter farm equipped with O(1000) nodes Total output rate: 20 - 100 kHz

Challenge: tracking similar to offline but fitting in the online time budget (13 ms)

Performance of tracking in upgrade trigger:

- > track finding eff. relative to offline for B, $p_T > 0.5 : 98.7 \%$
- ➤ total tracking time: 6.6 ms (5.4 ms with GEC)

First time possible to fully reconstruct events at 30 MHz rate at hadron collider

LHCb-PUB-2014-031

➤ Uses same strategy as Run1 topo trigger (inclusive for b-hadrons to 2, 3, 4 charged tracks)

Topological trigger for the Upgrade

- ➢ Based on BDT with corrected mass as input variable
- Performance depends on output rate dedicated to topo trigger (three scenarios highlighted)

C. Linn (CERN) | LHCb trigger

PANIC 2014, Hamburg

- availability of all high p_T tracks in event gives possibility to select fully hadronic decays without requirements that bias the lifetime
 (for the first time at hadron colliders at full input rate)
- ➢ Removes the need to control decay time acceptance effects → lowers systematics

Challenge:

control time to make possible track combinations and output rate

- Efficiencies for B⁰ -> hh: 60 % for D⁰ -> hh: 10 %
- > Timing for $B^0 \rightarrow hh$, $D^0 \rightarrow hh$ decays ~ 0.16 ms

LHCb trigger performed excellent in 2011 and 2012

A wide range of physics channels covered:

high efficiency for rare channels

For Run2:

Online alignment and calibration -> allows usage of RICH particle ID in trigger new concept of TurboStream

For the upgrade:

full software triggering, reconstruction of all events at 30 MHz

-> significant gains in signal efficiency + allows lifetime unbiased hadronic triggers

Backup

C. Linn (CERN) | LHCb trigger

PANIC 2014, Hamburg

Variation of L0Hadron efficiency for $D^0 \rightarrow K \pi$ as a function of data taking time:

Candidates per event and efficiencies after the upgrade:

Category	In 4π	ϵ (VELO)	ϵ (VELO) × ϵ (LHCb)
b-hadrons	0.1572 ± 0.0004	$34.9\pm0.1\%$	$11.9\pm0.1\%$
c-hadrons	1.422 ± 0.001	$24.73 \pm 0.04\%$	$15.12 \pm 0.03\%$
light, long-lived hadrons	33.291 ± 0.006	$7.022 \pm 0.004\%$	$6.257 \pm 0.004\%$

Yields after partial offline reconstruction:

	b-hadrons	c-hadrons	light, long-lived hadrons
Reconstructed yield	0.0317 ± 0.0006	0.118 ± 0.001	0.406 ± 0.002
$\epsilon(p_{\rm T}>2{\rm GeV\!/c})$	$85.6\pm0.6\%$	$51.8\pm0.5\%$	$2.34 \pm 0.08\%$
$\epsilon(\tau > 0.2 \text{ ps})$	$88.1\pm0.6\%$	$63.1\pm0.5\%$	$99.46 \pm 0.03\%$
$\epsilon(p_{\rm T}) \times \epsilon(\tau)$	$75.9\pm0.8\%$	$32.6\pm0.4\%$	$2.30 \pm 0.08\%$
$\epsilon(p_{\mathrm{T}}) \times \epsilon(\tau) \times \epsilon(\mathrm{LHCb})$	$27.9\pm0.3\%$	$22.6\pm0.3\%$	$2.17\pm0.07\%$
Output rate	27 0 kHz	$800 \mathrm{kHz}$	$264 \mathrm{kHz}$

Unbiased hadronic triggers:

	$B^0 \rightarrow h^+ h^-$	$D^0 \rightarrow h^+ h^-$	$B_s^0 \to \phi \phi$
track $p_{\rm T}$	$> 1000 \mathrm{MeV}/c$	$> 500 \mathrm{MeV}/c$	$> 500 \mathrm{MeV}/c$
M - M(TRUE)	$\pm 250 \mathrm{MeV}/c^2$	$\pm 75 \mathrm{MeV}/c^2$	$\pm 250 \mathrm{MeV}/c^2$
au	> 0.3 ps	> 0.2 ps	> 0.3 ps
$\sum p_{ m T} $	$> 4.5 \mathrm{GeV}/c$	$> 2.5 \mathrm{GeV}/c$	$> 4.5 \mathrm{GeV}/c$
DIRA	$< 3.6^{\circ}$	$< 3.6^{\circ}$	$< 3.6^{\circ}$
parent IP	$< 0.1 \mathrm{~mm}$	$< 0.1 \mathrm{~mm}$	< 0.1 mm
Max DOCA	< 0.1 mm	$< 0.1 \mathrm{~mm}$	$< 0.1 \mathrm{~mm}$

Timing of tracking sequence:

Time spent in trigger reconstruction as a function of GEC:

Track finding efficiency:

	$\nu = 7.6 [\%]$		
	no GEC	GEC=1200	relative
Ghost rate	10.9	5.9	-
long	42.7	42.9	50.4
long, from B	72.5	72.8	80.3
long, $p_T > 0.5 \text{GeV}/c$	86.9	87.4	97.2
long, from B, $p_T > 0.5 \text{GeV}/c$	92.3	92.5	98.7

C. Linn (CERN) | LHCb trigger

PANIC 2014, Hamburg