Transverse Spin Physics at PHENIX

Ming Liu
Los Alamos National Laboratory

Note: TSSA = Transverse Single Spin Asymmetry

Do We Understand the Physics?

Large Transverse Single Spin Asymmetry (SSA) in forward hadron production persists up to RHIC energy.

AGS 22 GeV beam

PRD65, 092008 (2002)

FNAL 200 GeV beam

PLB261, 201 (1991) PLB264, 462 (1991)

RHIC 200 GeV CMS

Sivers, Collins, Twist-3

Non-Perturbative cross section

0.50

0.25

0.00

-0.25

-0.50

PRL36, 929 (1976)

Perturbative cross section

TSSA: Sivers and Collins Mechanisms

Significant Asymmetries Observed in Polarized Target SIDIS

 $- \langle \sin(\Phi - \Phi_s) \rangle$

Siver's Effect (PDF)

Proton spin and quark k_T correlation

Study the Physics via Hard Scatterings at RHIC

(i) Sivers mechanism: correlation between proton spin & parton k_T

(ii) Collins mechanism:

Transversity × spin-dep fragmentation

Collinear Twist-3: quark-gluon/gluon-gluon correlation Expectation: at large p_T , $A_N \sim 1/Q \sim 1/p_T$

NLO pQCD and Forward Hadron Production at RHIC

Polarized Proton Collider at RHIC

Recent PHENIX Transverse Spin Runs

Year	√s [GeV]	Recorded L	Pol [%]	FOM (P ² L)
2006 (Run 6)	200	2.7 pb ⁻¹	50	700 nb ⁻¹
2008 (Run 8)	200	5.2 pb ⁻¹	45	1100 nb ⁻¹
2012 (Run12)	200	9.2 pb ⁻¹	60	3300 nb ⁻¹

Philosophy

- high resolution & high-rate
- trigger for rare events

Central Arms

- $|\eta| < 0.35$, $\Delta \phi \sim \pi$
- Momentum, EM Energy, PID
- π^0 and η

Muon Arms

- $-1.2 < |\eta| < 2.4$
- Momentum
- High pT muons

Muon piston calorimeter

- $-3.1 < |\eta| < 3.9$
- EM Energy
- π^0 and η

Mid-Rapidity π^0 and η

- Much improved measurements
 - 20x in statistics
- $A_N \sim 0 \ (<0.1\%)$
 - contrast with forward hadrons
- Theories need to be developed
 - Q² evolution dilutes the asymmetry?
 - Cancelation of different processes?
 - Gluon Sivers small?

Forward-Rapidity: π^0 and η

- Production well described by pQCD
- A_N is independent of collision energy
 - xF scaling?
- Similar for Pion and eta
 - No mass dependence?

arXiv:1406.3541

10

Forward η : "little" p_T Dependence

$$A_N \sim \frac{1}{Q} \sim \frac{1}{p_T}$$
 @ twist - 3

Naïve expectation at high pT

$$A_N \sim O\left(\frac{M_N P_T S}{UT}\right) + O\left(\frac{M_N P_T}{-U}\right)$$

Recent work, Twist-3, Kanazawa & Koike

Heavy Flavor: Forward $J/\psi A_N$

Open Heavy Quark A_N

Forward Muon Arms

- Run6, 8
- Run12, work in progress
- Expect much improved w/ FVTX from Run2015 first transverse p+p data

Forward Silicon Vertex

Forward Leading Neutron A_N

Phys. Rev. D 88, 032006 (2013)

A Surprise: A_N Sign Mismatch?

First attempt to check the "Universality of QCD description of TSSA"

Twist-3 (RHIC) v.s. Sivers (SIDIS)

Kang, Qiu, Vogelsang, Yuan PRD 2011

$$gT_{q,F}(x,x) = -\int d^2k_{\perp} \frac{|k_{\perp}|^2}{M} f_{1T}^{\perp q}(x,k_{\perp}^2)|_{\text{SIDIS}}$$

Qiu,Sterman Kouvaris et al. Kanazawa,Koike Kang,Prokudin

A possible solution? Kang, Prokudin PRD (2012)

Collins dominates?

Need more data!

Direct Photon TSSA with MPC-EX Upgrade

(for Run2015+)

8/25/14

• π^0 reconstruction out to >80GeV

Side View

North

South

PHENIX -> Forward/sPHENIX->ePHENIX

Documented: http://www.phenix.bnl.gov/plans.html

RHIC: A+A, polarized p+p, polarized p+A

eRHIC: e+p, e+A

Access Sivers and Collins with Jet and Hadron Azimuthal Distributions in Transversely Polarized p+p Collisions

$$\frac{E_{j}d\sigma^{A(S_{A})B\to jet+\pi+X}}{d^{3}\boldsymbol{p}_{j}dzd^{2}\boldsymbol{k}_{\perp\pi}} = \sum_{a,b,c,d,\{\lambda\}} \int \frac{dx_{a}dx_{b}}{16\pi^{2}x_{a}x_{b}s} d^{2}\boldsymbol{k}_{\perp a}$$

$$\times d^2 \boldsymbol{k}_{\perp b} \rho_{\lambda_a \lambda_a'}^{a/A, S_A} \hat{f}_{a/A, S_A} (x_a, \boldsymbol{k}_{\perp a}) \rho_{\lambda_b \lambda_b'}^{b/B} \hat{f}_{b/B} (x_b, \boldsymbol{k}_{\perp b})$$

$$\times \hat{M}_{\lambda_c,\lambda_d;\lambda_a,\lambda_b} \hat{M}^*_{\lambda'_c,\lambda_d;\lambda'_a,\lambda'_b} \delta(\hat{s}+\hat{t}+\hat{u}) \hat{D}^\pi_{\lambda_c,\lambda'_c}(z,\boldsymbol{k}_{\perp\pi}).$$

Experimental variables:

- Jet P_{i.} xF
- Hadron P_h, PID
- Beam polarization

$$A_N^{\sin\phi_{S_A}} \rightarrow \text{"Sivers-like"}$$

$$[A_N^{\sin(\phi_{S_A} \mp \phi_\pi^H)} \rightarrow \text{"Collins-like"}]$$

fsPHENIX Projected Jet Sivers Asymmetries

Test the universality of QCD description of TSSA: pp vs SIDIS

Naïve direct mapping from SIDIS Sivers

- "u-quark jet" A_N >0

With process-dep from SIDIS Sivers

- "u-quark jet" $A_N < 0$

Summary and Outlook

- Central rapidity
 - $A_N \sim 0$ for π^0 and η
- Forward rapidity
 - Non-zero A_N for π^0 , η and EM Clusters
 - Collins, Sivers, and twist-3 effects
- New physics capabilities with upgrades
 - FVTX: forward heavy-flavor program (μ , J/ ψ)
 - MPC-EX: forward A_N (γ) to test the "non-universality" of Sivers

- First direct precision study of Sivers-like and Collins-like TSSA in p+p
 - Sivers w/ forward quark-flavor tagged jets
 - Collins w/ hadron TSSA inside a jet
- Drell-Yan TSSA to test the "sign change" and Q² evolution effects

~2020

Pioneering High Energy Nuclear Interaction EXperiment

"Hot Topics" in Transverse Spin physics

- Non-universality of TMD distribution functions
 - Opposite-sign contribution of TMD distribution function to TSSA in semi-Inclusive DIS (SIDIS) process and Drell-Yan process

$$f_{1T}^{\perp q}|_{\text{SIDIS}} = -f_{1T}^{\perp q}|_{\text{DY}}$$

- Fundamental property based on Gauge-Link formalism of QCD
- Experimental verification needed
- Sign mismatch of SIDIS/TMD and pp/Higher-twist
 - TMD description at low p_T region, higher-twist description at high p_T region, and consistent description in the middle region

$$T_{q,F}(x,x) = -\int d^2k_{\perp} \frac{|k_{\perp}^2|}{M} f_{1T}^{\perp q}(x,k_{\perp}^2)|_{\text{SIDIS}}$$

But, sign mismatch of each description obtained from experiments

pQCD models for SIDIS and pp TSSA Are They Really Consistent?

Kang, Qiu, Vogelsang, Yuan (2011)

Sign mismatch Puzzle

- Significant TSSA observed in both SIDIS and pp, but are they from the same physics?
- Current SIDIS and pp data don't cover the same kinematics range!

=> fsPHENIX

Could "Collins effect" be the Solution?

A_N from twist-3 fragmentation functions (Kanazawa, Koike, Metz, Pitoniak, arXiv:1404.1033)

Flavor Tagged Jet Sivers Asymmetry

- Jet and leading h⁺ and h⁻
- jet_eta= [1,4]

We can do this!

Directly use Sivers function from SIDIS fit

Study Novel Heavy Quark TSSA at RHIC

Twist-3 tri-gluon correlation Funs

$$P_h^0 \frac{d\sigma^{3\text{gluon}}}{d^3 P_h} \simeq \frac{\alpha_s^2 M_N \pi}{S} \epsilon^{P_h p n S_\perp} \sum_{f = c\bar{c}} \int \frac{dx'}{x'} G(x') \int \frac{dz}{z^3} D_a(z) \int \frac{dx}{x} \delta\left(\tilde{s} + \tilde{t} + \tilde{u}\right) \frac{1}{\tilde{u}}$$

$$\delta_f \left(\frac{d}{dx} O(x) - \frac{2O(x)}{x} \right) \hat{\sigma}^{O1} + \left(\frac{d}{dx} N(x) - \frac{2N(x)}{x} \right) \hat{\sigma}^{N1} \right].$$

where $O(x) \equiv O(x, x) + O(x, 0), N(x) \equiv N(x, x) - N(x, 0).$

$$\delta_f = +1(c); -1(\overline{c})$$

 $A_N(D) \neq A_N(\overline{D})$

Model 1:

$$O(x) = 0.004xG(x)$$

Koike et. al. (2011) Kang, Qiu, Vogelsang, Yuan (2008)

Much Improved Forward Muon Probes

PHENIX Silicon VTX/FVTX Upgrades:

First transverse p+p data: 2015

Precision Charm/Beauty Measurements

Forward Dimuon Drell-Yan A_N

- DY A_N accesses quark Sivers effect (f_{1T}^{\perp}) in proton
- f_{1T}^{\perp} expected to reverse in sign from SIDIS to DY meas.

29

MPC-EX upgrade

Phys Rev. D 83 094001 (2011) arXiv 1208.1962v1 (2012)

- MPC (Muon Piston Calorimeter)
 - Electromagnetic calorimeter
- MPC-EX
 - Preshower detector
 - Commissioning in 2014
 - Experiment in 2015-2016
- $3.1 < \eta < 3.8$
 - Installed in the muon piston
- Direct photon asymmetry
 - To distinguish the Sivers effect and the higher-twist effect
- Collins asymmetry in jets
 - π^0 correlation with jet-like clusters