Searching for Dark Matter with the LUX experiment

PANIC2014 — 25th Aug. 2014 Jim Dobson for the LUX collaboration (<u>j.dobson@ed.ac.uk</u>)

THE UNIVERSITY of EDINBURGH

Dark Matter first postulated in 1930s

- * 1930s Fritz Zwicky
- and 1970s Vera Rubin
- → Galaxies are rotating too fast
- \rightarrow 10 × more mass needed!

Vera Rubin

Coma cluster

Rotation curves of galaxies

Much much more evidence since then

Rotation curve NGC-3198

Fraction of critical density 0.02 0.01 0.05 0.25 0.24 0.23 0.22 D 10 Ξ <u>د</u> Number relative ³He 10^{-€} 10-10⁻¹⁰ 2 Baryon density $(10^{-31} \text{ g cm}^{-3})$

BBN

fractior

Mass

⁴He

Bullet-cluster: DM not MOND

J. Dobson — PANIC2014 — 25th Aug. 2014

Much much more evidence since then

J. Dobson — PANIC2014 — 25th Aug. 2014

Much much more evidence since then

J. Dobson — PANIC2014 — 25th Aug. 2014

Detecting WIMPs

- Weakly Interacting Massive Particles:
 - * Favoured candidates for Cold Dark Matter (alternatives: Axions, sterile neutrinos, ...)
 - Expected to be neutral in most scenarios
 - * Interact only weakly with normal matter
 - Non-relativistic freeze-out resulting in relic density today of ~1000/m³
- Look for nuclear recoil from elastic scattering of galactic WIMPs off material in terrestrial detector:
 - WIMP speed ~220 km/s → nuclear recoils O(10 keV)
 - * Expect < 1 evt / kg / year</p>

$$\frac{\mathrm{d}R}{\mathrm{d}E_R} = \frac{\rho_0}{m_N m_\chi} \int_{v_{min}}^{\infty} v f(v) \frac{\mathrm{d}\sigma}{\mathrm{d}E_R}(v, E_R) \,\mathrm{d}v \,.$$

 $\frac{\mathrm{d}\sigma}{\mathrm{d}E_R} = \frac{m_N}{2\mu_N^2 v^2} \left(\sigma_0^{SI} F_{SI}^2(E_R) + \sigma_0^{SD} F_{SD}^2(E_R)\right) \qquad \sigma_0^{SI} = A^2 \left(\frac{\mu_N}{\mu_n}\right)^2 \sigma_n$

Detecting WIMPs

- Weakly Interacting Massive Particles:
 - * Favoured candidates for Cold Dark Matter (alternatives: Axions, sterile neutrinos, ...)
 - Expected to be neutral in most scenarios
 - * Interact only weakly with normal matter
 - Non-relativistic freeze-out resulting in relic density today of ~1000/m³

Important factors for detector: large mass, low-radioactivity,0000low-energy threshold, high signal acceptance, ability to1000reject ER backgrounds (discrimination)1000

recoils O(10 keV)

$$\frac{\mathrm{d}R}{\mathrm{d}E_R} = \frac{\rho_0}{m_N m_\chi} \int_{v_{min}}^{\infty} v f(v) \frac{\mathrm{d}\sigma}{\mathrm{d}E_R}(v, E_R) \, \mathrm{d}v$$

 $\frac{\mathrm{d}\sigma}{\mathrm{d}E_R} = \frac{m_N}{2\mu_N^2 v^2} \left(\sigma_0^{SI} F_{SI}^2(E_R) + \sigma_0^{SD} F_{SD}^2(E_R)\right) \qquad \sigma_0^{SI} = A^2 \left(\frac{\mu_N}{\mu_n}\right)^2 \sigma_n$

J. Dobson — PANIC2014 — 25th Aug. 2014

Slide 7

ntegral rate,

100

10

0.1

The Large Underground Xenon (LUX) experiment

The worlds largest dual-phase xenon time-projection chamber

The LUX collaboration

÷	Brown
<u> - 10</u>	Brown

Richard Gaitskell Simon Fiorucci Monica Pangilinan Jeremy Chapman David Malling James Verbus Samuel Chung Chan Dongging Huang

Thomas Shutt	PI, Professor
Dan Akerib	PI, Professor
Karen Gibson	Postdoc
Tomasz Biesiadzinski	Postdoc
Wing H To	Postdoc
Adam Bradley	Graduate Student
Patrick Phelps	Graduate Student
Chang Lee	Graduate Student
Kati Pech	Graduate Student

PI. Professor

Postdoc

Research Associate

Graduate Student

Graduate Student

Graduate Student

Graduate Student

Graduate Student

Imperial College

E.O. PERGET	•	•	
Henrique Araujo		PI, Reader	
Tim Sumner		Professor	
Alastair Currie		Postdoc	
Adam Bailey		Graduate Student	

Imperial College London

CAULT Lawrence Berkeley + UC Berkeley

Bob Jacobsen PI. Professor Murdock Gilchriese Senior Scientist Kevin Lesko Senior Scientist **Carlos Hernandez Faham** Postdoc Victor Gehman Scientist Mia Ihm Graduate Student

Lawrence Livermore

Adam Bernstein PI, Leader of Adv. Detectors Dennis Carr Mechanical Technician Staff Physicist Kareem Kazkaz Peter Sorensen Staff Physicist John Bower Engineer

LIP Coimbra

Isabel Lopes	PI, Professor
Jose Pinto da Cunha	Assistant Professor
Vladimir Solovov	Senior Researcher
Luiz de Viveiros	Postdoc
Alexander Lindote	Postdoc
Francisco Neves	Postdoc
Claudio Silva	Postdoc

SD School of Mines

PI, Professor
Graduate Student
Graduate Student

James White 🕇	PI, Professor
Robert Webb	PI, Professor
Rachel Mannino	Graduate Student
Clement Sofka	Graduate Student

UC Davis	
Mani Tripathi	PI, Professor
Bob Svoboda	Professor
Richard Lander	Professor
Britt Holbrook	Senior Engineer
John Thomson	Senior Machinist
Ray Gerhard	Electronics Engineer
Aaron Manalaysay	Postdoc
Richard Ott	Postdoc
Jeremy Mock	Graduate Student
James Morad	Graduate Student
Nick Walsh	Graduate Student
Michael Woods	Graduate Student
Sergey Uvarov	Graduate Student
Brian Lenardo	Graduate Student

UC Santa Barbara

Harry Nelson	PI, Professor
Mike Witherell	Professor
Dean White	Engineer
Susanne Kyre	Engineer
Carmen Carmona	Postdoc
Curt Nehrkorn	Graduate Student
Scott Haselschwardt	Graduate Student

University College London ALICI

Chamkaur Ghag PI, Lecturer Lea Reichhart Postdoc Sally Shaw Graduate Student

SUNY Albany

Matthew Szydagis

PI, Professor

University of Edinburgh

Alex Murphy PI, Reader Paolo Beltrame Research Fellow James Dobson Postdoc

University of Maryland

Carter Hall PI, Professor Attila Dobi Graduate Student **Richard Knoche** Graduate Student Graduate Student Jon Balajthy

University of Rochester

Frank Wolfs PI. Professor Wojtek Skutski Senior Scientist Eryk Druszkiewicz Graduate Student Mongkol Moongweluwan Graduate Student

University of South Dakota

<i>l</i> lei	PI, Professor
I	Postdoc
ler	Graduate Student
r	Graduate Student
ı	*Now at SDSTA

Dongming I

Chao Zhang

Angela Chil

Chris Chille Dana Byran

Daniel McKinsey	PI, Protessor
Peter Parker	Professor
Sidney Cahn	Lecturer/Resea
Ethan Bernard	Postdoc
Markus Horn	Postdoc
Blair Edwards	Postdoc
Scott Hertel	Postdoc
Kevin O'Sullivan	Postdoc
Nicole Larsen	Graduate Stud
Evan Pease	Graduate Stud
Brian Tennyson	Graduate Stud
Ariana Hackenburg	Graduate Stud
Elizabeth Boulton	Graduate Stud

Lecturer/Research Scientist	
Postdoc	
Graduate Student	

Principle of detection: dual phase xenon TPC

- * Xe: scintillation+ionization, self-shielding, ~3 g/cm³ and self shielding, A² boost for σ_{SI}
- * Energy reconstruction, 3D pos. rec., discrimination

Sanford Underground Research Facility

- Deep underground science at former Homestake gold mine water • in Lead, South Dakota
- LUX based in Davis campus on the 4850' level (1300 mwe) * LUX at SURF Excellent lab facilities and support
- •

An ultra low background environment

Full details of LUX backgrounds in recent paper: Astroparticle Physics (2015), pp. 33-46 <u>http://arxiv.org/abs/1403.1299</u>

```
J. Dobson — PANIC2014 — 25th Aug. 2014
```

The LUX cryostat

J. Dobson — PANIC2014 — 25th Aug. 2014

A LUX event - 1.5 keV gamma ray scatter

Calibrating LUX

External sources via source tubes:

WIMP-like

- Americium-beryllium (AmBe) and ²⁵²Cf: low energy neutrons → validating NR models and detector sims, NR efficiencies
- Yenon self-shielding → internal sources injected into circulation system preferable:
 - ^{83m}Kr: half-life ~1.8 hours, 32.1 + 9.4 keV betas → weekly purity, xyz corrections
 - Tritiated methane (CH3T): low energy betas (end point 18 keV). High stats, uniform and high purity → ER band, ER acceptance

⁸³Rb coated charcoal plummed into gas system $\rightarrow {}^{83m}Kr$

2014 — 25th Aug. 2014

Timeline of LUX so far

LUX funded in 2008 by DOE and NSF

Above-ground laboratory completed at SURF in **2011** LUX assembled; above-ground commissioning runs completed

Underground laboratory completed at SURF in **2012**. LUX moves underground in July to its new home in the Davis cavern.

Detector cooldown, xenon condensing and detector commissioning completed and gas phase testing completed April **2013**

Initial (3-month) WIMP search \rightarrow October 2013

Neutron gun calibration Nov/Dec 2013

Detector development and preparations for 300-day run: Jan **2014** → present

First dark matter results from LUX

118 kg and 85.3 days of live-time data

J. Dobson — PANIC2014 — 25th Aug. 2014

Run 3 data-taking

- >95% data taking efficiency over WIMP search region
- * Kr and AmBe calibrations throughout, CH3T after WIMP search

Unblinded analysis - aim for minimal cuts and high acceptance

Unbinned PLR to compare data with predicted signal + background in 4 parameter space: $\mathbf{x} = S1$, log10(S2/S1), r and z

Light and charge yields from NEST

- Yields at vertex based on Noble Element Simulation Technique, M. Szydagis, JINST 6, P10002 (2011)
 - * Uses full Lindhard model with Hitachi correction *Sorensen and Dahl, Phys. Rev. D* 83, 063501 (2011)
- Anchored to experimental data
- Includes electric field quenching of light signal

Light and charge yields from NEST

Run 3 event selection

Cut	Events Remaining
all triggers	83,673,413
detector stability	82,918,902
single scatter	$6,\!585,\!686$
S1 energy $(2 - 30 \text{ phe})$	26,824
S2 energy $(200 - 3300 \text{ phe})$	20,989
single electron background	19,796
fiducial volume	160

J. Dobson — PANIC2014 — 25th Aug. 2014

Extensive measurements and validation of efficiencies

- AmBe neutron calibration, Tritium data, LED calibrations and full MC simulation of NR events (includes all analysis cuts):
 - Dominates overall efficiency

NR acceptance efficiency

- S2–only
- S1–only
- ▽ S1, S2 combined, before threshold cuts
- + S1, S2 combined, after threshold cuts

Background discrimination: ER and NR bands

- * ER band directly from high stats tritium calibration, NR band from sims validated against neutron calibration data
- For 50% NR acceptance average discrimination measured to be 99.6% in ROI [S1 2-30 phe]

J. Dobson — PANIC2014 — 25th Aug. 2014

Run 3 LUX WIMP search: 85.3 live-days, 118 kg FV

J. Dobson — PANIC2014 — 25th Aug. 2014

Run 3 LUX WIMP search: 85.3 live-days, 118 kg FV

J. Dobson — PANIC2014 — 25th Aug. 2014

Spin-independent sensitivity plots

J. Dobson — PANIC2014 — 25th Aug. 2014

Low-mass WIMPs excluded

J. Dobson — PANIC2014 — 25th Aug. 2014

Neutron gun calibration

Following 2013 WIMP search run

J. Dobson — PANIC2014 — 25th Aug. 2014

In situ neutron gun calibration in 2

 2.5 MeV monochromatic neutron generator outside water tank + adjustable neutron conduit to detector (leveled to ~1 degree)

* 105.5 live hours of neutron tube data

J. Dobson — PANIC2014 — 25th Aug. 2014

Multiple-scatters \rightarrow absolute charge yield

- Absolute charge measured to t
- / keV Demonstrates sensitivity for re Run 3 cut-off onization Yield [electrons

Blue Crosses - LUX Measured Qy; 181 V/ cm (absolute energy scale)

Green Crosses - Manzur 2010; 1 kV/cm (absolute energy scale)

Purple Band - Z3 Horn Combined FSR/SSR; 3.6 kV/cm (energy scale from best fit MC)

Orange Lines - Sorensen IDM 2010; 0.73 kV/cm (energy scale from best fit MC)

Black Dashed Line - Szydagis et al. (NEST) Predicted Ionization Yield at 181 V/cm

Single-scatters → light yield

- NEST + detector simulation to simulate single-scatter spectra
- * Fit for L_{eff} in slices of S2 using χ^2 minimisation between data and simulated S1-spectra
- Energy scale from charge yield measurement

Blue Crosses - LUX Measured L_{eff}; reported at 181 V/cm (<u>absolute</u> <u>energy scale)</u>

Green Crosses - Manzur 2010; 0 V/cm_ (absolute energy scale)

Purple Band - Horn Combined Zeplin III FSR/SSR; 3.6 kV/cm, rescaled to 0 V/ cm (energy scale from best fit MC)

Orange Crosses - Plante 2011; 0 V/cm (absolute energy scale)

Black Dashed Line - Szydagis et al. (NEST) Predicted Scintillation Yield at 181 V/cm Run 3 WIMP result 3 keVnr conservative cut off

For more details:

 $\underline{http://www.pa.ucla.edu/sites/default/files/webform/20140228_jverbus_ucla2014.pdf}$

(forthcoming paper in preparation)

What's next?

J. Dobson — PANIC2014 — 25th Aug. 2014

New LUX analyses and 300 day run

- * Lots of new papers in the pipeline:
 - DD-data → revised Run 3 limit, S2-only, spin/momentum-independent limits, Axions, Halo/astrophysics-independent limits

20 times LUX Xenon mass, active scintillator veto, Xe purity at sub ppt level:

Figure 2.1 LZ detector concept.

- * Ultimate direct detection experiment approaches coherent neutrino scattering backgrounds
- * July 2014: selected as one of DOE/NSF second generation DM search experiments
- Scheduled to be deployed Davis lab 2016+

```
J. Dobson — PANIC2014 — 25th Aug. 2014
```

Summary

- * With 85.3 live-days LUX set world's best limit on spinindependent scattering:
 - * 90% UL 7.6 × 10⁻⁴⁶ cm² @ 33 GeV/c² \rightarrow first sub-zeptobarn WIMP detector
 - * Low-mass WIMP signals excluded by LUX
- In situ measurement of energy scale for low-energy nuclear recoils
- * LUX at the frontier of dark matter direct detection exciting times ahead with the 300 day run, WIMP discovery possible!
- * Longer term: LUX-ZEPLIN!

BACKUPS

J. Dobson — PANIC2014 — 25th Aug. 2014

WIMP search status < Oct. 2013

LUX in the Davis Cavern

J. Dobson — PANIC2014 — 25th Aug. 2014

LUX supporting systems

Kr removal program at dedicated facility:

130 ppb to 3.5 ppt!

Thermosyphor

LUX Thermosyphon

J. Dobson — PANIC2014 — 25th Aug. 2014

The active region of LUX

Bottom PMT array

- Primary scintillation: PDE of 14%
- S2 single electron extraction efficiency: 65%
- * Single extracted electron: 26 phe/e-

Exceptional technical performance

Low-energy electron recoil rate of 3e-3 events/keV/kg/day.

Kr/Xe ratio of 3.5 ppt.

Electron drift length longer than 130 cm.

Light detection efficiency of 14%.

Electron recoil discrimination of 99.6%, with drift field of 181 V/cm.

Position reconstruction

 Drift time (1.5 mm/μs) for Z-position, XY position by fitting S2 hit pattern with Light Response Functions (LRFs) from high stats internal calibrations

* XYZ info → fiducialisation and XYZ light collection corrections

Backgrounds in LUX

- * Construction materials chosen for low radioactivity: Ti, Cu, PTFE
- * Screened for radioactivity at SOLO counting facilities and at LBNL
- * 118 kg fiducial reduces BG by 10⁻³: gamma 1.8 mdru and neutron 500 ndru

Background Component	Source	10 ⁻³ x evts/keVee/kg/day
Gamma-rays	Internal Components including PMTS (80%), Cryostat, Teflon	$1.8 \pm 0.2_{\text{stat}} \pm 0.3_{\text{sys}}$
¹²⁷ Xe (36.4 day half-life)	Cosmogenic 0.87 -> 0.28 during run	0.5 ± 0.02 _{stat} ± 0.1 _{sys}
²¹⁴ Pb	²²² Rn	0.11-0.22 _(90% CL)
⁸⁵ Kr	Reduced from 130 ppb to 3.5 ± 1 ppt	$0.13 \pm 0.07_{sys}$
Predicted	Total	$2.6 \pm 0.2_{stat} \pm 0.4_{sys}$
Observed	Total	3.1 ± 0.2 _{stat}

Backgrounds in LUX

- * 118 kg average Apr. Aug. is 3.1 mdru (0.5 mdru cosmogenic)
- * 1 milli dru = 10⁻³ events/keVee/kg/day

Good agreement between NR sim and neutron calibs

- * AmBe + Cf: low energy neutrons peak at just above 2 phe S1 and out to 15 phe
- Comparison to NEST predictions for flat NR sim and NEST plus full detector simulation:

- * Full sim matches data well as includes ER contamination and neutron+X
- * WIMP data not expected to contain these so use flat NR sim for signal pdf

J. Dobson — PANIC2014 — 25th Aug. 2014

Profile likelihood ratio for limits

* Unbinned maximum likelihood compare data with prediction on event

4 observables: $\mathbf{x} = S1$, log10(S2/S1), r and z

Ratio of this to null hypothesis used to create test statistic and extract 90% CI upper limit

Cross checked with simple cut and count method

Simulated response for hypothetical WIMP signals

For 1000 GeV WIMP @ 1.9 ×10⁻⁴⁴ cm², XENON100 90% CL:

 \rightarrow expect 9 WIMPs in LUX search

For 8.6 GeV WIMP @ 2.0 ×10⁻⁴¹ cm², CDMS II Si (2012) 90% CL:

→ expect 1550 WIMPs in LUX search

Signal PDFs same as used in PLR and assume Standard Milky Way Halo parameters and conservative NR cut-off below 3 keVnr

J. Dobson — PANIC2014 — 25th Aug. 2014