

Studying the QGP in ultrarelativistic heavy-ion collisions

Carsten Greiner

PANIC, Hamburg, August 25th, 2014

- **Observables** at RHIC and **LHC** (elliptic flow, jets, heavy quarks)
- Dynamical description: "macro" or fluid dynamics
- Dynamical description: "micro" or transport dynamics
- Transport properties of the QGP

Initial pp scattering

Heavy-ion collisions are complex !

No model can describe all aspects of the QGP evolution

Nuclear modification factor R_{AA}

No indication of any departure from unity in p+Pb

... provide experimental demonstration that suppression = parton energy loss

GOETHE

UNIVERSI FRANKFURT AM

Elliptic flow v₂

(... but no microscopic information)

Gale, Jeon, Schenke, Tribedy, Venugopalan, Phys. Rev. Lett. 110 (2013)

Relativistic viscous fluid dynamics

Basic equations: energy and momentum conservation

- Constituent equations for $\Pi^{\mu\nu}$ $\Delta^{\mu}_{\alpha}\Delta^{\nu}_{\beta}(u\cdot\partial)\Pi^{\alpha\beta} = -\frac{1}{\tau_{\pi}}(\Pi^{\mu\nu} - S^{\mu\nu}) - \frac{4}{3}(\partial \cdot u)\Pi^{\mu\nu} \qquad \frac{F_{z}}{A} = -\eta \frac{\partial v_{z}}{\partial x}$ with $S^{\mu\nu} = \eta \left(\nabla^{\mu}u^{\nu} + \nabla^{\nu}u^{\mu} - \frac{2}{3}\Delta^{\mu\nu}(\partial \cdot u)\right)$ $\Delta^{\mu\nu} = g^{\mu\nu} - u^{\mu}u^{\nu} \text{ and } \nabla^{\nu} = \Delta^{\mu\nu}\partial_{\nu}$
- Equation of state $P(\varepsilon)$ relates thermodynamic η : shear viscosity pressure to the energy density τ_{π} : relaxation time

Initial conditions

- Models need to provide input for fluid dynamic simulations: initial energy density, flow velocities, shear stress tensor
- Initial conditions fluctuate from event to event
- Main source of fluctuations: nucleon positions
- Different models give different energy density distributions

C. Gale, S. Jeon, B. Schenke, Int.J.Mod.Phys. A28 (2013) 1340011

Anisotropic flow

- System expands
- Initial shape is converted into particle momentum distribution
- Quantify its azimuthal anisotropy via Fourier expansion:
- Compare IP-Glasma+MUSIC
 simulation with ALICE data
- Extracted shear viscosity to entropy density ratio:

 $\eta/s = 0.2$

Almost perfect fluidity!

$$\frac{dN}{d\phi} = \frac{N}{2\pi} \Big(1 + \sum_{n} (2\mathbf{v}_{n}\cos(n\phi)) \Big)$$

Event-by-event fluctuations

• Each event produces different vn

- Event-by-event distributions of vn are also well reproduced by the simulations
- Fluid dynamics correctly describes the bulk dynamics of heavy-ion collisions

$$\eta/s = 0.2$$

Gale, Jeon, Schenke, Tribedy, Venugopalan, Phys.Rev.Lett.110 (2013) 012302

Identified hadrons π , K, p: Elliptic flow / p_t – spectra $\frac{\text{GOETHE}}{\text{UNIVERSITA}}$

H. Song, S. Bass and U. Heinz, Phys. Rev. C 89, 0349119 (2014)

(2+1)-D viscous hydro + UrQMD (VISHNU), $(\frac{\eta}{s})_{QGP} = 0.16$

FRANKFURT AM

$\eta/s(T)$ from LHC v_n s

Paatelainen, Eskola, Niemi and Tuominen, Phys. Lett. B 731, 126 (2014)

... temperature dependence of the shear viscosity / entropy density ?

Evidence for fluid behavior in p+A collisions?

- Experiments find similar v_n in p+A as in A+A collisions CMS Collaboration, Phys.Lett. B724, 213 (2013)
- Can fluid dynamics work in such small systems? Viscous corrections become very large
- Initial state strongly depends on model
- Some models work, some do not. Not yet settled...

Bozek, Broniowski, Phys.Rev. C88 (2013) 014903

Schenke, Venugopalan, arXiv:1405.3605 (2014)

۲ آلاً o y [fm] 2

x (fm)

d+Au

Transport dynamics via Boltzmann equation GOETI

BAMPS: Boltzmann Approach to Multi-Parton Scatterings

- 3+1 dimensional, fully dynamic parton transport model
- Boltzmann equations for on-shell partons with pQCD interactions

$$\left(\frac{\partial}{\partial t} + \frac{\mathbf{p}_i}{E_i}\frac{\partial}{\partial \mathbf{r}}\right) f_i(\mathbf{r}, \mathbf{p}_i, t) = \mathcal{C}_i^{2 \to 2} + \mathcal{C}_i^{2 \leftrightarrow 3} + \dots$$

Z. Xu & CG, Phys. Rev. C71 (2005) Phys. Rev. C76 (2007)

PYTHIA-Glauber

Elastic collisions

• Leading-order pQCD cross sections

$$\left|\overline{\mathcal{M}}_{qq'\to qq'}\right|^2 = \frac{64\pi^2}{9}\alpha_s^2(t)\frac{u^2 + s^2}{[t - m_D^2(\alpha_s(t))]^2}$$

Divergences screened by Debye mass

- $g g \to g g$ $g g \to q \bar{q}$ $q \bar{q} \to g g \quad \text{and} \quad q \bar{q} \to q' \bar{q}'$ $q g \to q g \quad \text{and} \quad \bar{q} g \to \bar{q} g$ $q \bar{q} \to q \bar{q} \quad \text{and} \quad \bar{q} g \to \bar{q} g$ $q \bar{q} \to q \bar{q} \quad \text{and} \quad \bar{q} \bar{q} \to \bar{q} \bar{q}$ $q q \to q q \quad \text{and} \quad \bar{q} \bar{q} \to \bar{q} \bar{q}$ $q q' \to q q' \quad \text{and} \quad q \bar{q}' \to q \bar{q}'$
- Running coupling

Inelastic collisions

$gg \leftrightarrow ggg$		
$qg \leftrightarrow qgg$	and	$\bar{q}g \leftrightarrow \bar{q}gg$
$q\bar{q} \leftrightarrow q\bar{q}g$		
$qq \leftrightarrow qqg$	and	$ar{q}ar{q} \leftrightarrow ar{q}ar{q}g$
$q q' \leftrightarrow q q' g$	and	$q\bar{q}' \leftrightarrow q\bar{q}'g$

Improved Gunion-Bertsch matrix element:

Effective QCD LPM effect:

1Г

$$\begin{aligned} \left| \overline{\mathcal{M}}_{X \to Y+g} \right|^2 &= \left| \overline{\mathcal{M}}_{X \to Y} \right|^2 P_g \\ P_g &= 48\pi \alpha_s (k_{\perp}^2) \left(1 - \bar{x} \right)^2 \\ &\times \left[\frac{\mathbf{k}_{\perp}}{k_{\perp}^2} + \frac{\mathbf{q}_{\perp} - \mathbf{k}_{\perp}}{(\mathbf{q}_{\perp} - \mathbf{k}_{\perp})^2 + m_D^2 \left(\alpha_s (k_{\perp}^2) \right)} \right]^2 \end{aligned}$$

Nuclear modification factor R_{AA}

Uphoff et al, arXiv:1401.1364

- Hadronization of high p_t partons with AKK fragmentation functions
- LPM parameter fixed by comparison to RHIC data
- Realistic suppression both for RHIC and LHC

Reconstructed jets

Senzel et al, arXiv:1309.1657

Elliptic flow v₂

• Same pQCD interactions lead to a sizeable elliptic flow for bulk medium

• No hadronization for bulk medium \rightarrow no hadronic after-burner

Shear viscosity as QGP transport parameter

-Shear viscosity η - bulk viscosity ζ - heat conductivity κ - electric conductivity σ

Other coefficients of interest: Heavy quark diffusion constants, susceptibilites,...

Green-Kubo relation:

$$\eta = \frac{1}{10T} \int_{0}^{\infty} dt \int_{V} d^{3}r \langle \pi^{ij}(r,t)\pi^{ij}(0,0) \rangle$$

... electric conductivity

 σ_{el}/T

... and learn about the (strongly) interacting QGP

Heavy flavor R_{AA} and v₂ at LHC

Uphoff, Fochler, Xu, CG, Phys. Lett. B 717 (2012), Uphoff, Fochler, Xu, CG, arXiv: 1408.2964

Heavy flavor R_{AA} and v_2 simultaneously seems difficult

Conclusions & Outlook

- Heavy-ion collisions provide an unique opportunity for investigating QCD matter under extreme conditions
- Strong collective behavior of the QGP is successfully described by fluid or transport dynamics
- Both at RHIC and the LHC, hard probes (high p_t and heavy flavor) are quenched while traversing the QGP
- Transport coefficients allow a connection between dynamical models and lattice QCD
- What can we learn for heavy-ion collisions from smaller systems (p+p, p+A, ...)?

Thank you for your attention.

Heavy quark energy loss mechanism

Heavy flavor and charged hadron R_{AA} at LHC

Initial heavy flavor spectrum

Energy loss and transport cross section

Energy loss

in static medium

Transport cross section

in static medium

