The Higgs Physics Programme at the International Linear Collider

Felix Sefkow

LINEAR COLLIDER COLLABORATION

on behalf of the ILD and SiD detector concept groups

PANIC 2014, Hamburg, 28.8.2014

- The case for Higgs physics in e+e- collisions
- Measurements of Higgs parameters at the ILC
- Projected precision

Most results from: *ILC TDR, Vol. 4, arXiv:1306.6329 ILC Higgs White Paper, arXiv: 1310.0763*

Higgs discovery

2013 Nobel prize in physics

- A turning point:
- after 50 years the last building block falls into place
- and opens the door to something completely new

IIL

ilC

Anticipated discoveries

- The history of particle physics is full of predicted discoveries:
 - Positron, neutrino, pion, quarks, gluons, W, Z bosons, charm, bottom, top - and now Higgs
- Precision directs the way forward

From precision tests of electroweak quantum corrections

Higgs physics drives the field

"Driver" = a compelling line of inquiry that shows great promise for major progress over the next 10-20 years. Each has the potential to be transformative. Expect surprises.

• Use the Higgs as a new tool for discovery.

S.Ritz, Report on P5

- The main question today:
- establish the Higgs profile
 - mass, spin, parity
 - above all: couplings
- Is the Higgs(125) the Higgs and does it fulfil its role in the Standard Model?
- Or does it hold the key to New Physics?

Coupling to Higgs **Baseline ILC Program** 250fb⁻¹ @ 250GeV 500fb⁻¹ @ 500GeV 1000fb⁻¹ @ 1000GeV 10⁻² 10⁻³ 10^{2} 10⁻¹ 10 1 Mass [GeV]

Hamburg, 28.8.2014

Felix Sefkow

Higgs physi

ilr

Precision for discovery

	κ_V	κ_b	κ_γ	Physics behind EW symmetry breaking Models with new particles at the TeV
Singlet Mixing	$\sim 6\%$	$\sim 6\%$	$\sim 6\%$	scale, consistent w/ exp. constraints, lead to deviations in Higgs copings
2HDM	$\sim 1\%$	$\sim 10\%$	$\sim 1\%$	55 1 5
Decoupling MSSM	$\sim -0.0013\%$	$\sim 1.6\%$	< 1.5%	
Composite	$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$	Benchmark
Top Partner	$\sim -2\%$	$\sim -2\%$	$\sim -3\%$	for discovery
Бгоск/Peskin Snowmass 2013	\mathbf{F}		κ_k	is few % to sub-% SM-
Higgs	physics at the ILC		Felix Sefkow	Hamburg, 28.8.2014 6

International Linear Collider

- E_{CM} = 250 500 GeV
 - upgradable to 1 TeV
- Luminosity ~ 250 fb⁻¹/y
- Beam polarisation -0.8, +0.3
- TDR 2012

IL

• Proposed site: Kitakami, Japan

ILC detector concepts

- Optimised for precision
- Highly granular calorimeters for particle flow
- Ultra-thin and precise trackers
- Beauty and charm (!) vertex tagging
- Detailed simulation including beam background

8

Felix Sefkow Hamburg, 28.8.2014

ILD

ilc

Measurements of Higgs couplings

How to measure a coupling

- We perform counting experiments:
- N events / integr. luminosity = cross section x branching ratio
- Branching ratio := partial width / total width
- $\sigma \cdot BR = \sigma_i \cdot \Gamma_f / \Gamma_T \sim g_i^2 g_f^2 / \Gamma_T$
- Need σ and total width to convert branching ratios into couplings
 e.g. Z line shape at LEP
- Γ_T (Higgs)_{SM} = 4 MeV unobservable
- At LHC, only poorly constraint
 or SM value assumed
- At ILC, play the cards of e+e-...

10

Higgs production

Higgs strahlung P(e, e⁺)=(-0.8, 0.3), M =125 GeV 400 e^+ SM all ffh Ζ Zh (Q) (1) (300) -WW fusion section . ZZ fusion gz e W fusion sso100 $\bar{\mathbf{v}}$ W -- H 200 **g**w 300 350 400 450 500 WS 250 \sqrt{s} (GeV) e--Use polarisation to enhance cross section • Vary beam energy to select W or Z coupling Z fusion il Higgs physics at the ILC Felix Sefkow Hamburg, 28.8.2014

Higgs signal in Z recoil

- In e+e-, use kinematic constraints
- recoil mass against Z
 - $M^2 = E^2 p^2$
 - beam energy: $E = \sqrt{s}-E_z$, $p=p_z$
 - Z mass: $E_Z^2 = M_Z^2 + p_Z^2$
- No use of Higgs final state, can even be invisible
- Model-independent ZH cross section
- Absolute normalisation for BRs
 - sensitive to invisible decays
- Direct extraction of gz

116

- *the* central measurement

works best with muons, also well with electrons jets: not so easy

Higgs decays

- M_H = 125 GeV
- ideal for ILC

ic

- but not for $H \rightarrow ZZ^*$
- BR ($H \rightarrow ZZ^*$) = $\Gamma_Z / \Gamma_T \sim g_Z^2 / \Gamma_T$
- $\Rightarrow \Gamma_T \sim g_Z^2 / BR (H \rightarrow ZZ^*)$
- in principle possible but large error (20%)

Higgs total width

- Use **W fusion cross section** and H→WW* branching ratio
- $\Gamma_T \sim g_W^2 / BR (H \rightarrow WW^*)$
- W fusion σ is not model independent
 - ff = bb or WW* final state
 - measure same f.s. in ZH and scale
- $g_W^2/g_Z^2 \sim \sigma_{vvH} B(H \rightarrow ff) / \sigma_{ZH} B(H \rightarrow ff)$
- g_Z² from Z recoil
- BR (H→WW*) in vvH or ZH prod
- Done!
 self-contained set for absolute couplings
 C. Duerig, J. Tian, et al. LC-REP-2013-022, arXiv: 1403.7734

2nd generation fermion couplings

- Charm tagging at LHC: hopeless
 - constrain g_c by m_c / m_t
- At ILC: unique access to 2nd family
 - obtain bb and gg, too
- $H \rightarrow \mu \mu$: also possible, but few events

50000

40000

30000

20000

H→bb

35000 30000

25000 20000

15000

Higgs physics at the ILC

Felix Sefkow Hamburg, 28.8.2014 15

Top Yukawa coupling

) unting experiment, multi-jet final states % measurement of g_{ttH} possible $1\,{
m ab}$

- sizeable QCD corrections
- a few more GeV beam energy most valuable

Higgs physics at the ILC

Felix Sefkow Hamburg, 28.8.2014 18

ILC and LHC

- Only the ILC can go to the percent level precision to probe new physics
- also true for ILC vs high lumi LHC

Conclusion

- The Higgs discovery opens the door to a completely new kind of matter and a completely new phenomenology
- An e+e- machine provides the clean conditions and a self-contained set of Higgs observables
- Only the ILC can reach the precision at percent level to detect deviations which can direct us to new physics
- There is so much more
 - direct discoveries, top physics, ..
 - see talks by Frank Simon and Jürgen Reuter

Back-up

Constrained fit to ILC results

- Need to be careful when comparing LC and LHC results
- Impact of constraints on precision can be large
- Example:

error in Γ_T	unconstrained	$\sum BR = 1$
ILC 500	5.0%	1.6%
ILC 500 up	2.8%	0.75%
ILC 1000	4.6%	1.2%

(from Snowmass study)

