

PANIC 2014 Hamburg, August 2014 Frank Simon Max-Planck-Institute for Physics

on behalf of CLICdp

Ap. Ag≥it

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Outline

- CLIC: A future TeV-scale e⁺e⁻ Collider
- The Higgs Program at CLIC
 - couplings at 350 GeV, 1.4 TeV and 3 TeV
 - the top Yukawa coupling
 - the Higgs self-coupling
- Global fits
- Summary ullet

CLIC - A Possible Future at CERN

CLIC, a linear e⁺e⁻ collider at the energy frontier

- Based on two-beam acceleration, • room-temperatur cavities, gradients of up to 100 MV/m
- Maximum energy 3 TeV, construction in stages
- high luminosity (a few x 10^{34} cm⁻²s⁻¹)

A Staged Program to maximize Physics Potential

 For optimal luminosity, the energy of a collider based on CLIC technology can only be tuned within a factor of ~ 3: Staged construction of the machine

Provides:

- earlier start of physics
- optimal use of physics potential
- Precise energy of the stages depends on physics - with considerations for technical constraints:
 - Studied scenario:
 - 350 / 375 GeV (500 fb⁻¹)
 - Higgs (including total width), Top threshold scan
 - 1.4 TeV (1.5 ab⁻¹)
 - BSM physics, ttH, Higgs self-coupling, rare Higgs decays
 - 3 TeV (2 ab⁻¹)
 - BSM physics, Higgs self-coupling, rare Higgs decays

The CLIC Environment

• The main challenge: High energy and high luminosity leads to high rates of photon-induced processes:

 $\gamma\gamma \rightarrow$ hadrons interactions: 3.2 / bunch crossing @ 3 TeV

Combined with bunch structure (0.5 ns between BX): Pile-up of hadronic background: ~ 19 TeV in HCAL / bunch train \Rightarrow Needs to be rejected by reconstruction

e⁺e⁻ pairs drive crossing angle & vertex detector radius

The CLIC Environment

• The main challenge: High energy and high luminosity leads to high rates of photon-induced processes:

γγ → hadrons interactions:
3.2 / bunch crossing @ 3 TeV

Combined with bunch structure
(0.5 ns between BX):
Pile-up of hadronic background:
~ 19 TeV in HCAL / bunch train
✓ Needs to be rejected by reconstruction

e⁺e⁻ pairs drive crossing angle & vertex detector radius

A further consequence of radiative losses: The luminosity spectrum - characterized by a main peak and a tail to lower energies

Detectors & Event Reconstruction at CLIC

- CLIC detectors: Low-mass, high resolution vertexing & tracking and highly granular calorimeters with timestamping capability, all in a large high-field solenoid
- Event reconstruction based on Particle Flow Algorithms
 - Provides optimal jet energy reconstruction
 - When combined with ns-level timing in the calorimeters and hadron-collider type jet finders: A powerful tool for the rejection of γγ → hadrons background

Detectors & Event Reconstruction at CLIC

- CLIC detectors: Low-mass, high resolution vertexing & tracking and highly granular calorimeters with timestamping capability, all in a large high-field solenoid
- Event reconstruction based on Particle Flow Algorithms
 - Provides optimal jet energy reconstruction
 - When combined with ns-level timing in the calorimeters and hadron-collider type jet finders: A powerful tool for the rejection of $\gamma\gamma \rightarrow$ hadrons background

Reduction of background from 19 TeV to 100 GeV: Challenging CLIC environment under control!

• Now a guaranteed physics program - Profits from the wide energy reach of CLIC

Higgs Physics at CLIC PANIC2014, Hamburg, August 2014

Frank Simon (fsimon@mpp.mpg.de)

• Now a guaranteed physics program - Profits from the wide energy reach of CLIC

Main production modes - give access to couplings and total width

• Now a guaranteed physics program - Profits from the wide energy reach of CLIC

Main production modes - give access to couplings and total width

Rarer Processes - ZZ fusion, direct access to top Yukawa, self-coupling

Higgs Physics at CLIC PANIC2014, Hamburg, August 2014

Frank Simon (fsimon@mpp.mpg.de)

Exploring the Higgs Sector: Couplings

• The measurements at CLIC (and other lepton colliders) are:

 σ x BR (for specific Higgs decays) σ (for model-independent recoil mass analysis)

Both are sensitive to couplings:

 $\sigma_{\rm recoil} \propto g_{\rm HZZ}^2$ $\sigma \times {\rm BR}({\rm H} \rightarrow {\rm ff}) \propto \frac{g_{\rm Hii}^2 g_{\rm Hff}^2}{\Gamma_{\rm tot}}$

Exploring the Higgs Sector: Couplings

• The measurements at CLIC (and other lepton colliders) are:

 σ x BR (for specific Higgs decays) σ (for model-independent recoil mass analysis)

Both are sensitive to couplings:

$$\sigma_{
m recoil} \propto g_{
m HZZ}^2$$

 $\sigma \times {
m BR}({
m H}
ightarrow {
m ff}) \propto rac{g_{
m Hii}^2 g_{
m Hff}^2}{\Gamma_{
m tot}}$

A crucial ingredient: The total width - best results when combining ZH and VBF

$$\sigma(\mathrm{H}\nu_{e}\nu_{e}) \times \mathrm{BR}(\mathrm{H} \to \mathrm{WW}^{*}) \propto \frac{g_{\mathrm{HWW}}^{4}}{\Gamma_{\mathrm{tot}}} \longrightarrow \text{Accessible at 350 GeV} (134 \text{ fb for ZH, 52 fb for Hvv})$$

$$\frac{\sigma(e^{+}e^{-} \to \mathrm{ZH}) \times \mathrm{BR}(\mathrm{H} \to b\bar{b})}{\sigma(e^{+}e^{-} \to \mathrm{H}\nu_{e}\nu_{e}) \times \mathrm{BR}(\mathrm{H} \to b\bar{b})} \propto \frac{g_{\mathrm{HZZ}}^{2}}{g_{\mathrm{HWW}}^{2}} \longrightarrow \frac{g_{\mathrm{HZZ}}^{2}}{g_{\mathrm{HWW}}^{2}} \longrightarrow \frac{g_{\mathrm{HZZ}}^{2}}{g_{\mathrm{HWW}}^{2}}$$

$$g_{\mathrm{HWW}} \text{ pinned down with model-independent } g_{\mathrm{HZZ}} \text{ and } high-\mathrm{BR H->bb decay}$$

Simulation Studies

- All based on GEANT4 simulations using detailed detector models and realistic event reconstruction including PFA
- Beam-induced and physics backgrounds included
- Statistical uncertainties assume unpolarised beams

Model-Independent Measurement of Coupling to Z

Model-Independent Measurement of Coupling to Z

Coupling Measurements at 350 GeV

- Determine limit to invisible BSM Higgs decays based on 2-jet events in HZ, with Z->qq.
 - Resolution on fraction of invisible decays is limited by physics background fluctuations:
 Δσ x BR_{inv} = 0.57%

Coupling Measurements at 350 GeV

- Determine limit to invisible BSM Higgs decays ulletbased on 2-jet events in HZ, with Z->qq.
 - Resolution on fraction of invisible decays is limited by physics background fluctuations: $\Delta \sigma \mathbf{x} BR_{inv} = 0.57\%$
- σ(HZ) x BR(H-> ττ)

signal selection in hadronic t decays

Coupling Measurements at 350 GeV

- Determine limit to invisible BSM Higgs decays \bullet based on 2-jet events in HZ, with Z->qq.
 - Resolution on fraction of invisible decays is limited by physics background fluctuations: $\Delta \sigma \times BR_{inv} = 0.57\%$

10

1

Entries σ(HZ) x BR(H-> ττ) signal selection in hadronic τ decays

- Ongoing analyses: ullet
 - $\sigma(HZ) \times BR(H->WW^*)$ estimated precision **2%** •

10⁻¹

Combined extraction of H \rightarrow bb, cc, gg in HZ and Hvv •

-0.4

 Crucial for the determination of the total width at 350 GeV estimated precision 1%, 5%, 6%

-0.2

signal

qqττ

qqqq

0.2

TMVA classifier BDT

0

other bkgrs

0.4

Measurements in WW fusion at 1.4 & 3 TeV

- Increasing cross section of WW fusion provides high statistics at high energy: ullet
 - ~ 430k (750k with e⁻ polarisation) H at 1.4 TeV with 1.5 ab⁻¹
 - ~ 930k (1.7M with e⁻ polarisation) H at 3 TeV with 2 ab⁻¹
 - Possibility to access rare H decays
 - High-precision measurements of common decays

- One example: H->bb, cc, gg at 3 TeV
 - profits from flavor-tagging capability and high statistics

Results:

- σ(Hvv) x BR(H->bb): **0.3%**
- σ(Hvv) x BR(H->cc): **2.9%**
- σ(Hvv) x BR(H->gg): **1.8%**

Measurements in WW fusion at 1.4 & 3 TeV

Measuring rare processes: ullet

No BDT cut

 $h \rightarrow \mu^+ \mu^-$

u+u vv μ+μ_6+6

• H->µ⁺µ⁻ at 3 TeV:

 $\sigma(Hvv) \times BR(H->\mu^+\mu^-)$ with 16% precision at 3 TeV (at 1.4 TeV: 38%) BR: 2.1 x 10⁻⁴

Η->γγ

110

115

 $\sigma(Hvv) \times BR(H->\gamma\gamma)$ with 15% precision at 1.4 TeV BR: 2.3 x 10⁻³

120 125

Η->Ζγ

 $\sigma(Hvv) \ge BR(H->Z\gamma)$ with **42%** precision at 1.4 TeV (Z -> qq, e^+e^- , $\mu^+\mu^-$) BR: 1.6 x 10⁻³

>ə0 204

Events / 0.5 (10² 10²

10

0.06 ttH, fully hadronic, $H \rightarrow b\overline{b}$

The Higgs Self-Coupling

• The ultimate challenge in Higgs physics: Direct access to the Higgs potential

At CLIC: Measurement in WW fusion - increasing cross-section at high energies

0.16 fb at 1.4 TeV, 0.63 fb at 3 TeV (increases by 1.8 for 80% e⁻ polarization)

~11% accuracy of self-coupling with the full (polarized) CLIC program

Extracting Results: Global Fits

 Each σ x BR measurement alone does not directly provide the underlying coupling parameters - A global analysis of all results is required to assess the impact of the CLIC program on the understanding of the Higgs sector

The Full Picture: Global Fits

 From the measurements of σ and σ x BR the couplings and the total width are determined by a global fit:

$$\chi^2 = \sum_i \frac{(C_i - 1)^2}{\Delta F_i^2} \qquad \qquad \Delta F_i:$$
 (o o

 ΔF_i : uncertainty of measurement (σ or σxBR)

Two fits:

Model-independent fit - total width as a free parameter

Model-dependent fit - LHC-like constraints

Assumptions: No BSM decays, the total width can be described by a few parameters which parametrize deviations of partial widths from the SM expectation

$$\kappa_i^2 = \frac{\Gamma_i}{\Gamma_i|_{\rm SM}}$$
 $\Gamma_{\rm H,md} = \sum_i \kappa_i^2 BR_i$

In the fit: replace g_{Hii} with κ_{Hii} , Γ_H with $\Gamma_{H,md}$

Measurement Summary

			Statistical precision
Channel	Measurement	Observable	350 GeV
			500 fb^{-1}
ZH	Recoil mass distribution	m _H	120 MeV
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \to \mathrm{invisible})$	$\Gamma_{\rm inv}$	0.6%
ZH	$H \rightarrow b\overline{b}$ mass distribution	$m_{ m H}$	tbd
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{Z} \to \ell^+ \ell^-)$	$g^2_{\rm HZZ}$	4.2%
ZH	$\sigma(\mathrm{HZ}) \times \mathit{BR}(\mathrm{Z} \to \mathrm{q}\overline{\mathrm{q}})$	$g^2_{\rm HZZ}$	1.8%
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g^2_{ m HZZ}g^2_{ m Hbb}/\Gamma_{ m H}$	$1\%^\dagger$
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \to c\overline{c})$	$g^2_{ m HZZ} g^2_{ m Hcc}/\Gamma_{ m H}$	5%†
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \rightarrow \mathrm{gg})$		$6\%^\dagger$
ZH	$\sigma(\mathrm{HZ}) imes \textit{BR}(\mathrm{H} ightarrow au^+ au^-)$	$g^2_{ m HZZ} g^2_{ m H au au}/\Gamma_{ m H}$	5.7% Cha
ZH	$\sigma(\mathrm{HZ}) \times \mathit{BR}(\mathrm{H} \to \mathrm{WW}^*)$	$g^2_{ m HZZ} g^2_{ m HWW}/\Gamma_{ m H}$	2% [†]
ZH	$\sigma(\mathrm{HZ}) \times \mathit{BR}(\mathrm{H} \to \mathrm{ZZ}^*)$	$g^2_{ m HZZ} g^2_{ m HZZ} / \Gamma_{ m H}$	tbd Hve
$H\nu_e\overline{\nu}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times \mathit{BR}(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g^2_{ m HWW}g^2_{ m Hbb}/\Gamma_{ m H}$	$3\%^{\dagger}$ Hve

 Some analyses are still in progress "*"missing results are labelled "tbd" estimates from preliminary studies "†"

work in progress - current status

 Full summary of CLIC Higgs studies all results show expected statistical uncertainties assuming SM values and unpolarised beams

			Statistical	precision
Channel	Measurement	Observable	1.4 TeV	3.0 TeV
			1.5 ab^{-1}	2.0 ab^{-1}
$Hv_e\overline{v}_e$	$H \rightarrow b\overline{b}$ mass distribution	m _H	40 MeV*	33 MeV*
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g^2_{ m HWW}g^2_{ m Hbb}/\Gamma_{ m H}$	0.3%	0.2%
$Hv_e\overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{c}\overline{\mathrm{c}})$	$g^2_{ m HWW} g^2_{ m Hcc}/\Gamma_{ m H}$	2.9%	2.7%
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{gg})$		1.8%	1.8%
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times \mathit{BR}(\mathrm{H} \to \tau^{+}\tau^{-})$	$g^2_{ m HWW}g^2_{ m H au au}/\Gamma_{ m H}$	3.7%*	tbd
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mu^{+}\mu^{-})$	$g^2_{ m HWW}g^2_{ m Huu}/\Gamma_{ m H}$	38%	16%
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv_e}\overline{\mathrm{v}_e}) imes \mathit{BR}(\mathrm{H} o \mathrm{gg})$		15%	tbd
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{Z}\gamma)$		42%	tbd
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{WW}^{*})$	$g_{ m HWW}^4/\Gamma_{ m H}$	$1.1\%^{*}$	$0.8\%^*$
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{ZZ}^{*})$	$g^2_{ m HWW}g^2_{ m HZZ}/\Gamma_{ m H}$	$3\%^\dagger$	$2\%^\dagger$
He ⁺ e ⁻	$\sigma(\mathrm{He^+e^-}) \times BR(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g^2_{ m HZZ} g^2_{ m Hbb}/\Gamma_{ m H}$	$1\%^\dagger$	$0.7\%^\dagger$
tīH	$\sigma(t\bar{t}H) \times BR(H \rightarrow b\bar{b})$	$g_{ m Htt}^2 g_{ m Hbb}^2 / \Gamma_{ m H}$	8%	_
$HHv_e \overline{v}_e$	$\sigma(\mathrm{HHv_e}\overline{\mathrm{v}_e})$	<i>8</i> HHWW	7%*	3%*
$HHv_e \overline{v}_e$	$\sigma(\mathrm{HHv_e}\overline{\mathrm{v}_e})$	λ	32%	16%
$HHv_e\overline{v}_e$	with $-80\% e^-$ polarization	λ	24%	12%

Global Fits: Results

correlations of measurements not included in fit, input measurements include preliminary estimates

Global Fits: Results

correlations of measurements not included in fit, input measurements include preliminary estimates

model-independent 1% - level determination of most couplings in full program (all limited by the model-independent measurement of the ZH coupling)

 \Rightarrow 1% to few ‰ with LHC-like model-dependence

Summary

- CLIC is a possible future energy frontier machine at CERN and currently the only mature option for multi-TeV e⁺e⁻ collisions
- It offers the opportunity for a comprehensive Higgs program:
 - A first stage at 350 GeV provides a model-independent determination of most couplings and of invisible decays
 - Subsequent running at higher energy (here: 1.4 TeV and 3 TeV)
 - improves the precision of most observables due to higher statistics
 - enables a direct measurement of the ttH coupling
 - provides the potential to measure the Higgs self coupling on the ~10% level
 - Combined fits to all measurements at all three energy stages were performed to determine the expected precision of all relevant couplings and of the total width
 - model-independent measurements of most couplings on the 1% level, a few per mille with LHC-like constraints

Backup

Higgs Physics at CLIC PANIC2014, Hamburg, August 2014

Frank Simon (fsimon@mpp.mpg.de)

CLIC - Long-Term Plan

2012-16 Development Phase

Develop a Project Plan for a staged implementation in agreement with LHC findings; further technical developments with industry, performance studies for accelerator parts and systems, as well as for detectors.

2016-17 Decisions

On the basis of LHC data and Project Plans (for CLIC and other potential projects), take decisions about next project(s) at the Energy Frontier.

2017-22 Preparation Phase

Finalise implementation parameters, Drive Beam Facility and other system verifications, site authorisation and preparation for industrial procurement.

Prepare detailed Technical Proposals for the detector-systems.

2022-23 Construction Start

Ready for full construction and main tunnel excavation.

2023-2030 Construction Phase

Stage 1 construction of a 500 GeV CLIC, in parallel with detector construction.

Preparation for implementation of further stages.

2030 Commissioning

From 2030, becoming ready for data-taking as the LHC programme reaches completion.

CLIC Detectors

CLIC Detectors

CLIC_ILD

CLIC_SiD

Higgs Physics at CLIC PANIC2014, Hamburg, August 2014

Frank Simon (fsimon@mpp.mpg.de)

The Studies

- Full simulations with beam-induced ad physics background in CLIC_ILD and CLIC_SiD detector concepts
- Particle flow event reconstruction with PandoraPFA
- Events generated with WHIZARD

Cross sections including ISR and luminosity spectrum:

	350 GeV	1.4 TeV	3 TeV
$\sigma(e^+e^- \rightarrow ZH)$	134 fb	9 fb	2 fb
$\sigma(e^+e^- \rightarrow Hv_e^-v_e^-)$	52 fb	279 fb	479 fb
$\sigma(e^+e^- \rightarrow He^+e^-)$	7 fb	28 fb	49 fb

• Additional gain by polarization: substantial for WW fusion

Polarization	Enhancement factor		
$P(e^-): P(e^+)$	$e^+e^- {\rightarrow} ZH$	$e^+e^- \to H \nu_e \overline{\nu}_e$	
unpolarized	1.00	1.00	
-80%: 0%	1.18	1.80	
-80%:+30%	1.48	2.34	

Global Fits - Result Summary Tables

Model-independent:

Parameter	Measurement precision		
	350 GeV 500 fb ⁻¹	+ 1.4 TeV +1.5 ab^{-1}	$+3.0 \text{ TeV} +2.0 \text{ ab}^{-1}$
$rac{m_{ m H}}{\lambda}$	120 MeV _	30 MeV 24%	20 MeV 11%
Γ _H [%]	5.0	3.6	3.4
<i>g</i> _{HZZ} [%]	0.8	0.8	0.8
g _{HWW} [%]	1.8	0.9	0.9
g _{Hbb} [%]	2.0	1.0	0.9
g _{Hcc} [%]	3.2	1.4	1.1
g _{Htt} [%]	_	4.1	4.1
g _{Htt} [%]	3.5	1.6	< 1.5
g _{Ημμ} [%]	_	14	5.6
g_{Hgg} [%]	3.6	1.1	1.0
g _{Hγγ} [%]	_	5.7	< 5.7

Model-dependent (9/7 parameters):

Parameter	Measurement precision		
	350 GeV	+ 1.4 TeV	+3.0 TeV
	500 fb^{-1}	$+1.5 \text{ ab}^{-1}$	$+2.0 \text{ ab}^{-1}$
$\Gamma_{\rm H,model}$ [%]	1.6	0.29	0.22
<i>к</i> _{НZZ} [%]	0.43	0.31	0.23
<i>к</i> _{НWW} [%]	1.5	0.15	0.11
<i>к</i> _{Нbb} [%]	1.7	0.33	0.21
<i>к</i> _{Нсс} [%]	3.1	1.1	0.75
<i>к</i> _{Нtt} [%]	—	4.0	4.0
κ _{Ηττ} [%]	3.4	1.3	< 1.3
<i>к</i> _{Нµµ} [%]	—	14	5.5
<i>к</i> _{Hgg} [%]	3.6	0.76	0.54
<i>к</i> _{Нүү} [%]	_	5.6	< 5.6
$\kappa_{\rm H\gamma\gamma}$ [%] Parameter	– Mea	5.6 surement pre	< 5.6 cision
κ _{Ηγγ} [%] Parameter		5.6 surement pre + 1.4 TeV	< 5.6 cision +3.0 TeV
κ _{Ηγγ} [%] Parameter		5.6 surement pre + 1.4 TeV +1.5 ab^{-1}	< 5.6 cision +3.0 TeV +2.0 ab^{-1}
		5.6 surement pre + 1.4 TeV +1.5 ab ⁻¹ 0.29	< 5.6 cision +3.0 TeV +2.0 ab^{-1} 0.22
		5.6 surement pre + 1.4 TeV +1.5 ab^{-1} 0.29 0.31	< 5.6 cision +3.0 TeV +2.0 ab^{-1} 0.22 0.23
 κ_{Hγγ} [%] Parameter Γ_{H,model} [%] κ_{HZZ} [%] κ_{HWW} [%] 	 Mea 350 GeV 500 fb ⁻¹ 1.6 0.43 1.5	5.6 surement pre + 1.4 TeV +1.5 ab^{-1} 0.29 0.31 0.15	< 5.6 cision +3.0 TeV +2.0 ab^{-1} 0.22 0.23 0.11
 κ_{Ηγγ} [%] Parameter Γ_{H,model} [%] κ_{HZZ} [%] κ_{HWW} [%] κ_{Hbb} [%] 	- Mea 350 GeV 500 fb ⁻¹ 1.6 0.43 1.5 1.7	5.6 surement pre + 1.4 TeV +1.5 ab^{-1} 0.29 0.31 0.15 0.33	< 5.6 cision +3.0 TeV +2.0 ab^{-1} 0.22 0.23 0.11 0.21
	$-$ Mea $350 \text{ GeV} \\ 500 \text{ fb}^{-1}$ 1.6 0.43 1.5 1.7 3.1	5.6 surement pre + 1.4 TeV +1.5 ab^{-1} 0.29 0.31 0.15 0.33 1.0	<5.6 cision +3.0 TeV +2.0 ab^{-1} 0.22 0.23 0.11 0.21 0.74
	- Mea 350 GeV 500 fb ⁻¹ 1.6 0.43 1.5 1.7 3.1 3.4	5.6 surement pre + 1.4 TeV +1.5 ab^{-1} 0.29 0.31 0.15 0.33 1.0 1.3	<5.6 cision +3.0 TeV +2.0 ab^{-1} 0.22 0.23 0.11 0.21 0.74 <1.3
	- Mea 350 GeV 500 fb ⁻¹ 1.6 0.43 1.5 1.7 3.1 3.4 3.6	5.6 surement pre + 1.4 TeV +1.5 ab^{-1} 0.29 0.31 0.15 0.33 1.0 1.3 0.76	< 5.6 cision $+3.0 \text{ TeV} \\+2.0 \text{ ab}^{-1}$ $0.22 \\ 0.23 \\ 0.11 \\ 0.21 \\ 0.74 \\< 1.3 \\ 0.56$

Higgs Physics at CLIC PANIC2014, Hamburg, August 2014

Frank Simon (fsimon@mpp.mpg.de)

