

25/08/2014

Search for electroweak SUSY production at CMS

Mario Masciovecchio on behalf of the CMS collaboration

> PANIC 2014 DESY, Hamburg (Germany)

Particles And Nuclei International Conference

2

ETH Institute for Particle Physics

- Most of SUSY searches look for strong SUSY production
 - ✓ Larger cross section
 - > No evidence of signal
 - Set exclusions up to m(gluino) \$\leq 1.3 TeV

Why electroweak SUSY?

3

ETH Institute for Particle Physics

- If there, squarks and gluinos must be heavy
- EWK SUSY models may be favoured
 - ✓ **Direct** production of **charginos**, **neutralinos** and **sleptons**
 - \checkmark Charginos and neutralinos decay to sleptons, or $W/Z/h^0$ bosons
 - \checkmark Low hadronic activity

GMSB models with NLSP higgsino

Electroweak SUSY searches @ CMS

4

Electroweak SUSY with h⁰ boson

Diverse final states are explored, depending on the h⁰ decay:

- \blacktriangleright h⁰ \rightarrow bb, WW, ZZ, $\gamma\gamma$, $\tau\tau$
- Single lepton + 2 b's
- Same-sign di-lepton
- Multi-lepton

- Di-leptons + di-jet
- γγ + di-jet
- γγ + lepton(s)
- 4 b's

hZ to (bb) + (II)

CMS PAS SUS-14-002

- Higgs reconstruction
 - Two most b-like jets
 - ✓ with $100 < M_{bb} < 150 \text{ GeV}$
- Z boson reconstruction
 - > Exactly one e^+e^- or $\mu^+\mu^-$ pair
 - \checkmark with 81 < M_{II} < 101 GeV
- Background estimation
 - ✓ Z+jets
 - E^T_{miss} template from γ+jets sample, normalized to data w/ E^T_{miss} < 50 GeV</p>
 - ✓ Flavour symmetric (tt, WW, tW, ττ)
 - \blacktriangleright Normalization to $e\mu$ sample
 - ✓ Other SM from MC

Use **E^T_{miss}** as discovery variable **Bins** to maximize sensitivity

Agreement with SM prediction

New

hZ, hW to $\gamma\gamma$ + 2 jets

New

CMS PAS SUS-14-

- Select events with no isolated leptons
- No events with 2 b-jets & $95 < M_{bb} < 155 \text{ GeV}$
- Z/W boson reconstruction
 ➤ 70 < M_{ii} < 110 GeV
- Use E_T^{miss} as discovery variable
 Bins to maximize sensitivity
- Estimate **SM background** from $M_{\gamma\gamma}$ sidebands
 - $\succ \mathbf{E}_{\mathsf{T}}^{\mathsf{miss}} \mathsf{template} \mathsf{from} \mathbf{M}_{\mathsf{y}\mathsf{y}} \mathsf{sidebands}$
 - > Normalized by fit of $\mathbf{M}_{\mathbf{y}\mathbf{y}}$ sidebands
- Observation consistent with SM background

hh, hZ and hW to $\gamma\gamma$ + lepton(s)

ETH Institute for Particle Physics

- Include **hh**, with <u>one</u> $h \rightarrow WW$, ZZ, or $\tau\tau$
- Select events with ≤ 1 **b-jet** to avoid overlap
- Require at least one lepton per event $\geq 1 \mu$'s
 - \blacktriangleright NO μ & $\& \ge 1$ e
 - \checkmark 93% of events have only 1 e or 1 μ
- Use M_T as discovery variable \checkmark Transverse mass of leading lepton + E_t^{miss}
- Estimate **SM background** by fit of **M**_{vv} sidebands ٠
- \blacktriangleright **\mu**-channel in agreement with SM prediction
- \blacktriangleright e-channel shows an excess of 2.1 σ
 - Consistent with background fluctuation

New

hh and hZ: GMSB intepretation

CMS PAS SUS-14-002

ETH Institute for Particle Physics

New

M5 PA5 SUS-13-006, arXiv:1405.7570

- Single lepton final state
 - ➢ h(bb) ₩(lv)
 - \checkmark Events with 1 lepton + 2 b-jets
 - \checkmark Large $\mathbf{E}_{\mathbf{T}}^{\text{miss}}$ (bins)
 - ✓ Background from MC
 - $\circ~$ Scale factors from data
 - ✓ Use M_{bb} as discovery variable

- Same-sign di-lepton final state
 - ➤ h(WW) W(Iv)
 - ✓ Events with SS lepton pair, no b-jets & exactly 2 or 3 jets
 - \checkmark Large $\mathbf{E}_{\mathbf{T}}^{\text{miss}}$, $\mathbf{M}_{\mathbf{T}}$ and $\mathbf{M}_{\mathbf{T2}}$
 - ✓ Data-driven/MC background
 - ✓ Use M_{Iii} as discovery variable

11 CMS PAS SUS-13-006, arXiv:1405.7570

- Single lepton final state
 - \succ h(bb) W(Iv)
 - \checkmark Events with 1 lepton + 2 b-jets
 - ✓ Large **E**_T^{miss} (**bins**)
 - \checkmark Background from MC
 - Scale factors from data
 - ✓ Use M_{bb} as discovery variable

- Same-sign di-lepton final state
 - ≻ h(WW) W(Iv)
 - Events with SS lepton pair, no b-jets & exactly 2 or 3 jets
 - \checkmark Large $\mathbf{E}_{\mathbf{T}}^{\text{miss}}$, $\mathbf{M}_{\mathbf{T}}$ and $\mathbf{M}_{\mathbf{T2}}$
 - ✓ Data-driven/MC background
 - ✓ Use **M**_{Ijj} as discovery variable

Multi-lepton final state

- Re-interpretation of arXiv:1404.5801
- h(WW, ZZ, ττ) W(Iv)
- ✓ Events with ≥ 3 leptons
 - $\,\circ\,$ Including e, μ and $\tau_{\!_{h}}$
- ✓ Data-driven/MC background
- $\checkmark\,$ Bins in lepton and b-jet multiplicity, E_{T}^{miss} and H_{T}

$\chi_1^{\pm} \chi_2^{0}$ production to hW

12 CMS PAS SUS-13-006, arXiv:1405.7570

- Exclusion limits on production cross-section
 - Combination of all the channels
 - Single lepton final state
 - Same-sign di-lepton
 - Multi-lepton final state

New

13

ETH Institute for Particle Physics

- Exclusion limits on production cross-section
 - \checkmark Combination of all the channels
 - Single lepton final state
 - Same-sign di-lepton
 - Multi-lepton final state

✓ Addition of $h(\gamma\gamma)$ final states from CMS PAS **SUS-14-002**

14

- Wide spectrum of analyses searching for electroweak SUSY production
 ✓ Only a selection presented today!
- Many new searches with Higgs tagging

 ✓ Complementary to previous results
- Neutralino & chargino mass probed up to 700 GeV
- No evidence for SUSY, yet
- Looking forward to 2015!

THANK YOU!

16

Exploit largest branching ratio for Higgs boson decay • \checkmark BR(h \rightarrow bb) \simeq 56%

1

2

3

4

- Select events with ۲ \checkmark Exactly 4 or 5 jets
 - $\checkmark \ge 2$ b-jets (tight ID)
- Double Higgs reconstruction ۲
 - \checkmark b-pairs with minimum ΔM_{bb}
 - \checkmark $|\Delta M_{\rm hb}| < 20 \, {\rm GeV}$
 - ✓ 100 < $\langle M_{\rm bb} \rangle$ < 140 GeV
- Bins in E_T^{miss} significance, S_{MET} ۲
- Data-driven **background**
- Agreement with SM

Three-lepton search

17

S SUS-13-006, arXiv:1405.7570

- Select events with exactly 3 leptons
 - ✓ Including e, μ and (≤ 1) τ_h
- NO events with b-jets
 ✓ Reject # background
- Large $\mathbf{E}_{\mathbf{T}}^{\text{miss}}$ (> 50 GeV)
- Bins (3D) in E_T^{miss}, M_T, M_{II}
- Exploit multiple final states
 - $\circ~$ 3 e/ μ with(out) OSSF pair
 - \circ SS pair + τ_h
 - $\circ \quad \text{OS e}\mu + \tau_h$
- Background data-driven estimation

Observation consistent with SM prediction in the full phase-space

Same-sign di-lepton

18 CMS PAS SUS-13-006, arXiv:1405.7570

- Three-lepton final states **not** sensitive to cases with one lost lepton
 - > Not sensitive to small mass splitting, because of soft leptons
 - Recover events with same-sign di-lepton search
- Select events with exactly 1 SS lepton pair (ee, eμ, μμ)
- **NO** events with OSSF pair within 15 GeV from Z boson mass
- Large E_T^{miss} (> 120 GeV)
- **Bins** in **E**_T^{miss} (plus hadronic veto)
- MC/data-driven background
- Agreement with SM prediction

$\chi_1^{\pm} \chi_2^{0}$ production

ETH Institute for Particle Physics

- Results are interpreted in diverse scenarios
- And with different mass splitting
- > Only a selection is presented today!

Z(II) + di-jet

20

SUS-13-006, arXiv:1405.7570

- Select events with a Z candidate
 ✓ Exactly 2 leptons, with Z → II
- And ≥ 2 jets, consistent with a W/Z
 ✓ 70 < M_{II} < 110 GeV
 ✓ Reject Z+jets background
- NO events with b-jets
 ✓ Reject tt background
- Large E_T^{miss} (> 80 GeV)
- Bins in E_T^{miss}, M_T, M_{II}
- Background data-driven estimation
- Observation is consistent with SM

21 CMS PAS SUS-13-006, arXiv:1405.7570

ETH Institute for Particle Physics

• From the combination of Z + di-jet and three-leptons searches

OS di-lepton

22 CMS PAS SUS-13-006, arXiv:1405.7

- Select events with exactly 2 OS lepton pair (ee, eμ, μμ)
- NO events with OSSF pair within 15 GeV from Z boson mass
- NO events with b-jets
 ✓ Reject tt background
- Large E_T^{miss} (> 60 GeV)
- Use M_{CT⊥} as discovery variable
 ✓ Binned max likelihood fit (bakcground only hypothesis)
- Data-driven **background**

Agreement with SM prediction

Chargino/slepton pair production

E_T^{miss} significance – S_{MET}

24

ETH Institute for Particle Physics

• χ^2 of **observed** E_T^{miss} wrt. null hypothesis (i.e., $E_T^{miss} = 0$)

$$S_{MET} = (E_T^{miss})C^{-1}(E_T^{miss})^T$$

 \checkmark C - covariance matrix \rightarrow Resolution of all the objects in the event

Better **fake**- E_T^{miss} rejection than plain E_T^{miss}

* <u>Bibliography</u>: arXiv:1106.5048

Transverse mass $- M_T$

25

• Projection of the mass M on the transverse plan

$$M_{T}^{2} = (E_{T,1} + E_{T,2})^{2} - (\vec{p}_{T,1} + \vec{p}_{T,2})^{2}$$

- \succ $M_T \leq M$
- ⇒ End-point at parent mass

Discovery of W boson at UA1 (1983)

S-transverse mass – M_{T2}

26

- Generalization of transverse mass M_T to case of two decay chains with an unobserved particle each

$$M_{T2}(m_{c}) = \min_{\vec{p}_{T}^{c(1)} + \vec{p}_{T}^{c(2)} = \vec{p}_{T}^{miss}} \left[max(M_{T}^{(1)}, M_{T}^{(2)}) \right]$$

✓ If all masses are known, M_{T2} will have an **endpoint** at the parent mass

• **Division** of events into two massless pseudo-jets

* <u>Bibliography</u>: arXiv:hep-ph/9906349, arxiv:hep-ph/0907.2713

Contranverse mass – M_{CT}

27

- New variable derived from the transverse mass M_T
- $\blacktriangleright \text{ Parity transformation: } \mathbf{p}_2 \rightarrow P(\mathbf{p}_2) \qquad \Rightarrow \qquad \mathsf{M}^2_{\text{CT}} = (\mathsf{E}^2_{\text{T},1} + \mathsf{E}^2_{\text{T},2}) (\ \vec{\mathsf{p}}^2_{\text{T},1} \vec{\mathsf{p}}^2_{\text{T},2})$
- Division of events into three systems
 U_T All upstream objects
 V (i = 1.2)
 - V_i (i = 1,2) Composite visible particles

- $\succ M_{CT\perp}$
- \succ **M**_{CT} is **in**sensitive of the upstream momentum
- And has end-point at the parent mass
- * Bibliography: arXiv:0910.1584

