

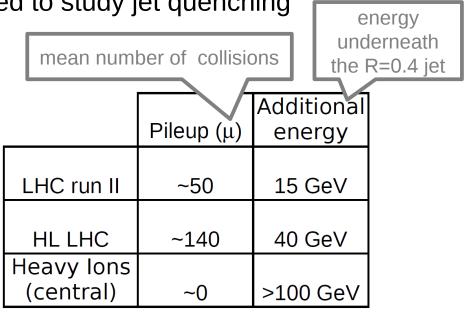
Pileup subtraction at the particle level

Peter Berta¹, <u>Martin Spousta¹</u>, David Miller²

¹ Charles University in Prague ² Enrico Fermi Institute, University of Chicago

20th Particles and Nuclei International Conference, 25-29 August 2014, Hamburg, Germany

Outline



- Introducing the problem of pileup
- •Brief overview of existing methods and a summary of latest developments
- Constituent subtraction
- Performance of the constituent subtraction on jets and jet shapes
- Full Event subtraction
- Conclusions

Introduction

- Pileup (=superposition of multiple pp collisions at each bunch spacing) in pp collisions. It affects:
 - jets and jet shapes variables, e.g. used to tag boosted objects
 - missing-pt and event shapes
 - photons and lepton isolation
- Underlying event in heavy ion collisions. It affects:
 - jets and jet internal structure used to study jet quenching
 - photons and lepton isolation
- Backgrounds at LHC influence practically each measurement – starting from Higgs ending with jet quenching => need to develop (or keep improving) methods for subtraction!

Basic overview of methods

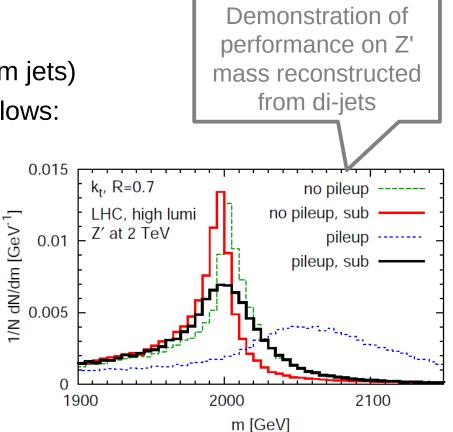
Method	Works for any experiment?	Can do full event subtraction?	Can work without tracking?	Can work in heavy ions?	ls the code public?
4-mometum subtraction	~	×	~	~	<
Shape expansion	 ✓ 	×	~	×	<
Grooming [*]	 ✓ 	×	 ✓ 	×	~
Charged hadrons	🗶 (CMS)	 ✓ 	×	×	-
Topoclusters	样 (ATLAS)	 ✓ 	~	×	-
Cleansing **	 ✓ 	×	×	×	~
SoftKiller	 ✓ 	 ✓ 	~	?	~
PUPPI	 ✓ 	 ✓ 	×	?	×
Constituent Subtraction	~	V.	~	?	~
main focus of this talk per-part		icle methods			

* Grooming is a general term including various methods (see backup) for details see e.g. arXiv:1311.2708.

** Cleansing is not discussed in this presentation, method is described in arXiv:1309.4777 and further discussed in arXiv:1404.7353.

Basic four-momentum subtraction

• Calculate the **background density** ρ as a median over patches of transverse momentum p_T in the area A


$$\rho = \operatorname{median}_{i \in \text{patches}} \left\{ \frac{p_{ti}}{A_i} \right\}$$

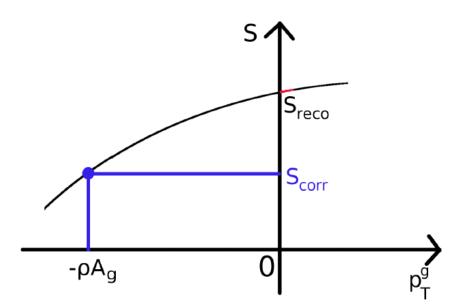
(The use of median excludes a bias from jets)

• Subtract the jet **four-momentum** as follows:

 $p_{\mu}^{(\mathrm{sub})} = p_{\mu} - A_{\mu}\rho$

- ... the basic scheme for subtraction of background both in pp and HI
- It corrects the kinematics, but it cannot correct the internal structure of the jet

Cacciari, Salam, PLB 659 (2008) 119

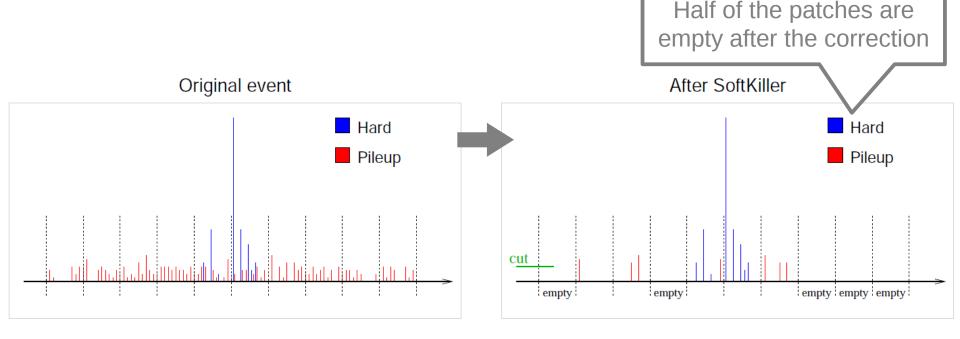


Shape expansion method

Soyez, et al. PRL 110 (2013) 162001

- Basic objects: **ghosts** = infinitesimally soft mass-less particles uniformly covering the η , ϕ space. Each ghost covers certain area A_g.
- Ghosts are clustered by the jet algorithm with real particles with no impact on kinematics of a jet.
- To subtract background, one might set for each ghost $p_{T,g} = -\rho A_g$
- It is cumbersome to work with negative particles => do extrapolation using Taylor expansion.
- Jet shape S = arbitrary function of jet constituents. Corrected jet shape:

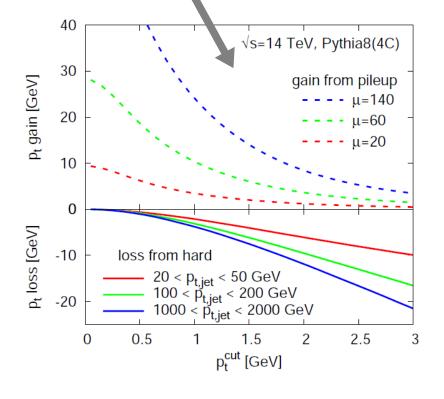
$$S_{\rm corr} = \sum_{k=0}^{\infty} (-\rho A_g)^k \cdot \frac{\partial^k S(p_{\rm T}^g)}{\partial p_{\rm T}^{g\,k}} \bigg|_{p_{\rm T}^g = 0}$$



SoftKiller

Cacciari et al. arXiv:1407.0408

- Discards particles that fall below a certain transverse momentum threshold.
- \bullet Estimate the threshold event-by-event such that ρ estimated from the median-area method is evaluated to be zero.
- Technically very simple just need to find a median from set of maximal p_T values from each patch.

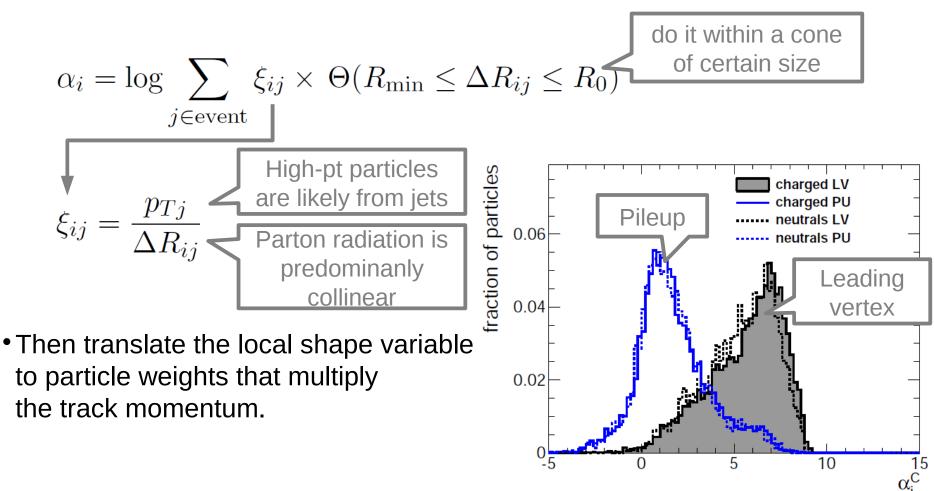


SoftKiller

Cacciari et al. arXiv:1407.0408

- Biases on jet energy scale: net positive bias from background particles that are not subtracted, net negative bias from particles lost from jets.
- For the typical p_T cuts and grid spacing (=size of patches) of a~0.4 the biases cancel.

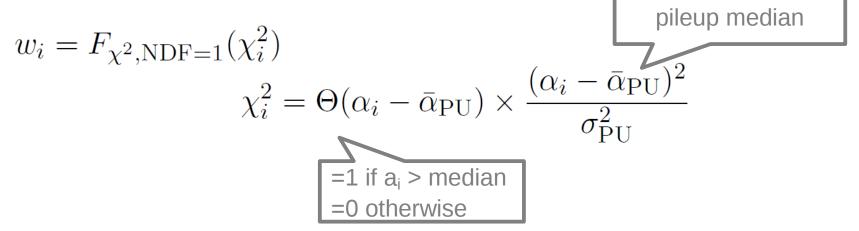
- + very fast and simple => e.g. potential
 for triggering
- ? may induce a flavor dependence of jet energy scale
- ? performance for larger jet radii and jet shapes


PUPPI

(PileUp Per Particle Identification)

Bertolini et al., arXiv:1407.6013

 \bullet For each particle define a local shape variable α_i using other particles

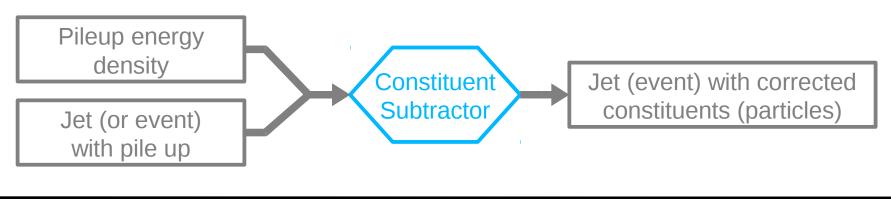

PUPPI

(PileUp Per Particle Identification)

Bertolini et al., arXiv:1407.6013

• Translate the local shape variable to particle weights using cumulative distribution function of χ^2 distribution

- Weights with values between 0 and 1 used to multiply the p_T of particle.
- Zero weight discards the particle.
- Other discriminants can be easily included.


- Two main ingredients of constituent subtraction:
 - background (pileup) p_T density

$$p = \text{median}_{\text{patches}} \left\{ \frac{p_{\text{T,patch}}}{A_{\text{patch}}} \right\}$$

- ghosts

$$p^g_{\mu} = p^g_{\rm T} \cdot \left[\cos\phi^g, \sin\phi^g, \sinh y^g, \cosh y^g\right]$$

 \bullet Constituent subtraction provides a rule for associating the background $p_{\rm T}$ density with a given constituent, independent of any tracking information.

• For each event:

- 1. estimate the background p_{T} density, ρ
- 2. add ghosts ($p_{T,g} \rightarrow 0$) among particles and run the jet algorithm

• For each jet in the event:

- 3. for each ghost set $p_{T,g} = \rho A_g$
- 4. evaluate distance $\Delta R_{i,k}$ between particle *i* and ghost *k* for all particle-ghost pairs

$$\Delta R_{i,k} = p_{\mathrm{T}i}^{\alpha} \cdot \sqrt{\left(y_i - y_k^g\right)^2 + \left(\phi_i - \phi_k^g\right)^2}$$

5. sort the distances and iteratively change the momenta as follows

If
$$p_{\mathrm{T}i} \ge p_{\mathrm{T}k}^g$$
: $p_{\mathrm{T}i} \longrightarrow p_{\mathrm{T}i} - p_{\mathrm{T}k}^g$, otherwise: $p_{\mathrm{T}i} \longrightarrow 0$,
 $p_{\mathrm{T}k}^g \longrightarrow 0$; $p_{\mathrm{T}k}^g \longrightarrow p_{\mathrm{T}k}^g - p_{\mathrm{T}i}$.

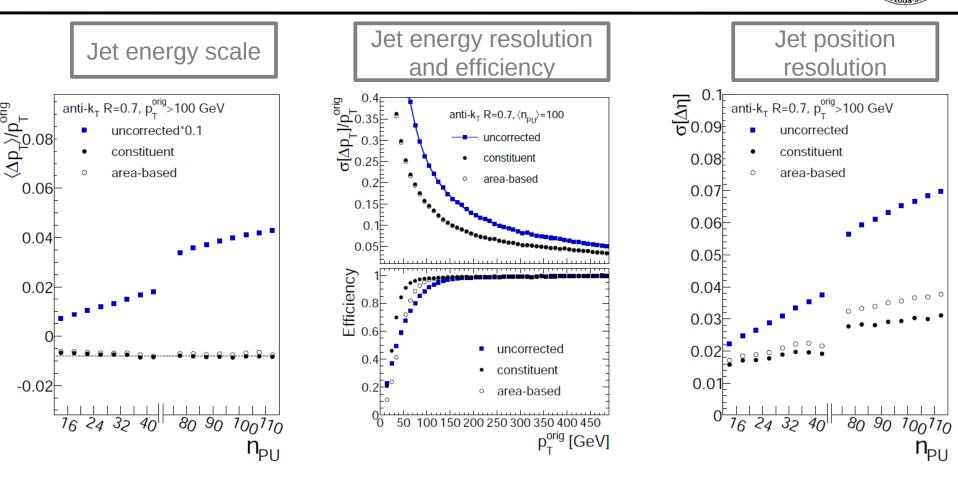
until no more pairs remain or $\Delta R_{i,k} > \Delta R^{max}$

6. discard all particles with zero transverse momentum

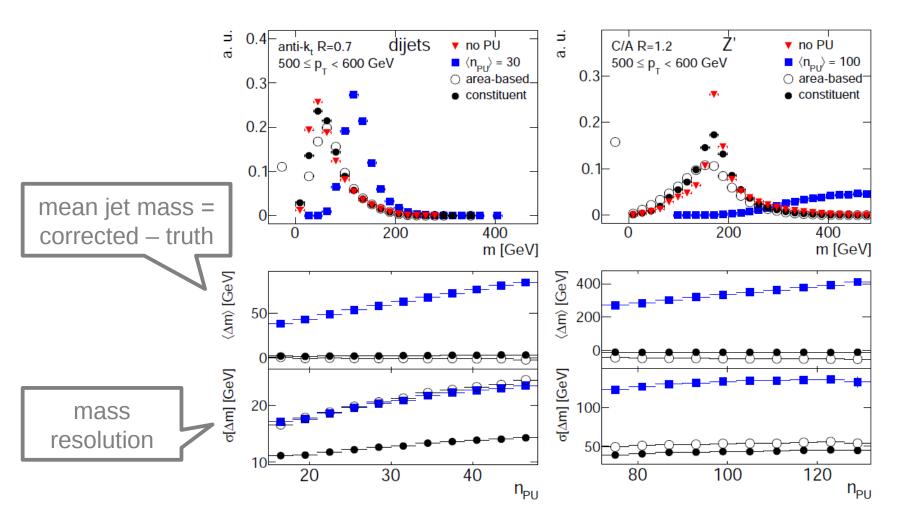
Properties of the algorithm

- Generic method for the background subtraction.
- Generic = independent of jet algorithm, tracking or calorimeter information => can be used across experiments and across backgrounds.
- Output:
 - a) jet with corrected constituents => can estimate unbiased jet shapes
 - b) subtracted event => can improve e.g. missing- p_T reconstruction
- Other properties:
 - accounts for fluctuations of the background
 - is longitudinally invariant
 - is reasonably fast
 - incorporates the subtraction of mass density for massive particles (for simplicity not discussed here)
 - can accommodate any improved energy density estimates
 - can accommodate discriminants helping to identify pileup

Properties of the algorithm


- Free parameters:
 - Ghost area A_g the smaller the better, but also slower.
 - Parameter α configuration with $\alpha{>}0$ prefers to subtract lower p_{T} particles.
 - Maximal distance, ΔR_{max} restricts subtraction between ghostparticle pairs with large distance.
- Default settings **do not need to be tuned** e.g. for different jet sizes or different level of pile-up.
- Tuning of free parameters may lead to modest improvements.
- Algorithm is publicly available from FastJet Contrib and documented in Berta et al., JHEP 06 (2014) 092.

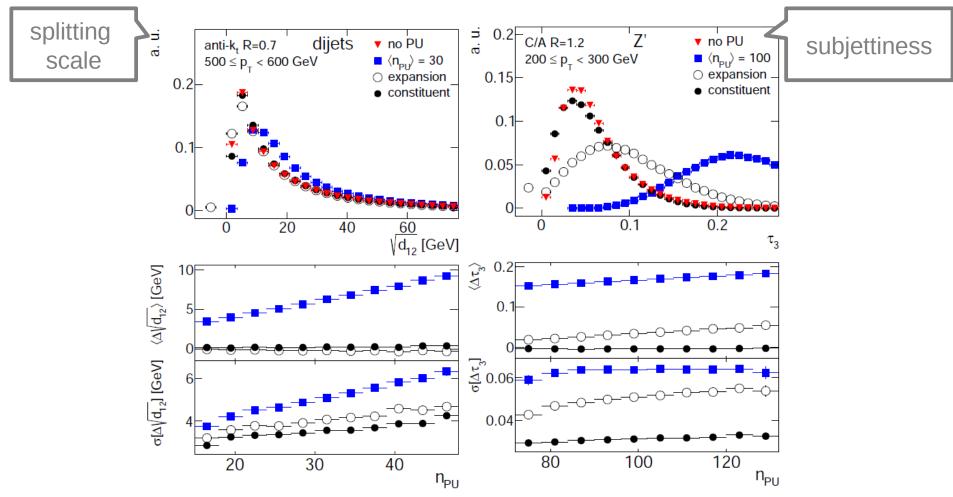
Performance tests


- Pythia8 simulated samples of dijets and $Z' \rightarrow tt$ with m(Z')=1500 GeV.
- Simulation at 8 TeV without underlying event.
- Using clustering algorithms anti-kt with R=0.7, R=1.0 and Cambridge/Aachen with R = 1.2.
- Pseudorapidity cut on jets $|\eta|$ <2.
- Performance compared to the area 4-vector and shape-expansion methods.

Performance – jet kinematics

- Perfect stability of jet energy scale with increasing pileup.
- Significant improvement in jet reconstruction efficiency and jet position resolution. Jet energy resolution similar to area-based subtraction.

Performance – jet and Z' mass

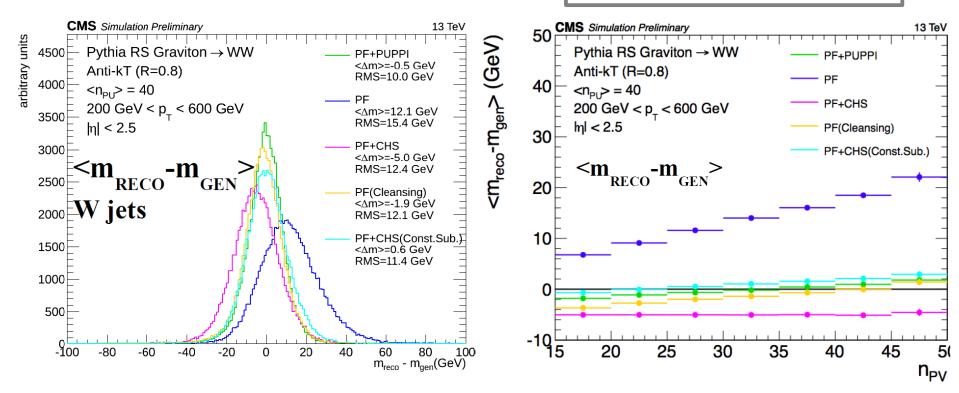


Significant improvement over area based subtraction

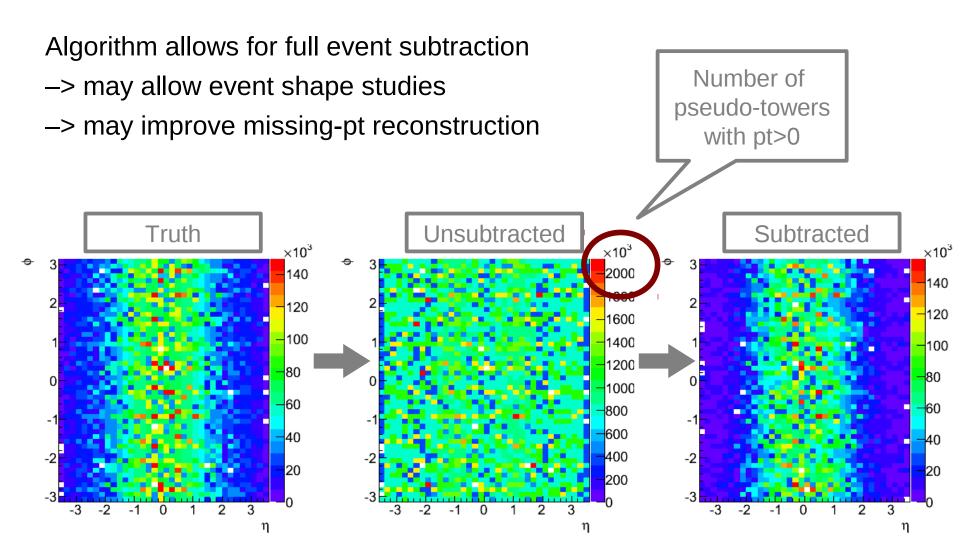
PANIC 2014

Performance – jet shape variables

• Examples of variables often used to discriminate highly boosted objects.

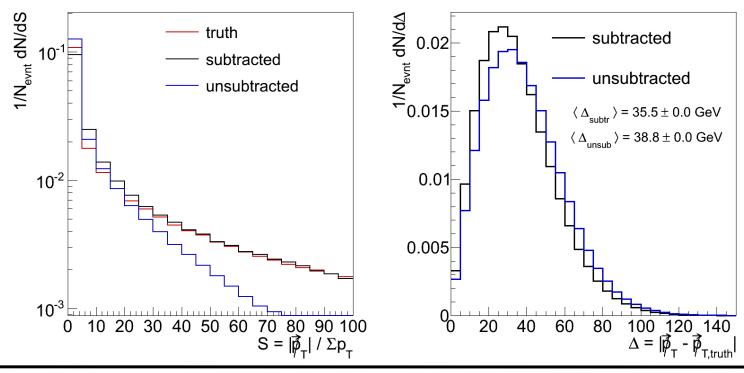

• Significant improvement comparing to the shape expansion method.

PANIC 2014


Performance – full detector simulation

Viola Sordini, BOOST 2014

- Tests using the full detector simulation by CMS.
- Very good performance of both PUPPI and Constituent subtraction.
- PUPPI gives slightly better resolutions than Constituent subtraction.




```
PANIC 2014
```

Missing-pt significance

- Trivial missing-pt reconstruction on subtracted events tested in Z' events with mu=100, $\vec{p}_{\tau} = (\Sigma p_{\tau} \cos\phi, \Sigma p_{\tau} \sin\phi)$
- Two kinds of missing-pt significance variables estimated. Subtracted events significantly better agreement with truth than unsubtraced.
- Further improvements possible if subtracted objects enter estimates.

PANIC 2014

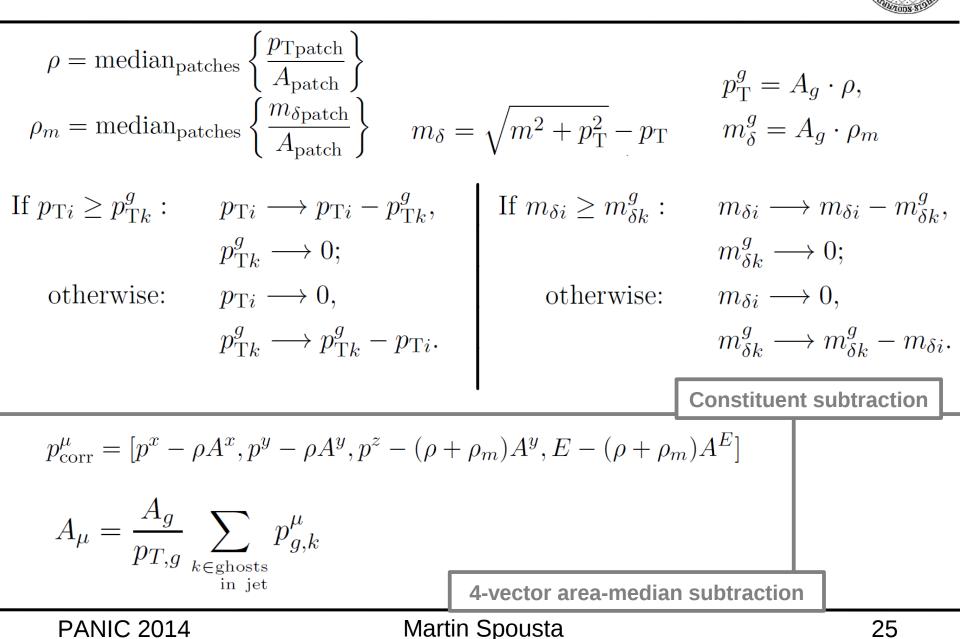
Martin Spousta

Conclusions

- Pileup/UE subtraction is a very important problem in pp/HI collisions!
- Several new methods for the pileup subtraction on the market. Methods should be tested side by side. Ideas should be shared.
- •Constituent subtraction has a very good ability to remove the pileup (or HI underlying event).
- •Constituent subtraction is probably the most generic method.
- It is implemented in FastJet Contrib and easy to plug in to the reconstruction chain.

Backup

Two basic methods of grooming



- Trimming
 - reconstruct jets with large radii (e.g. R=1.0) and recluster to jets with smaller radii (e.g. R_{trim}=0.2)
 - accept only if their $f = p_T/p_{T,orig}$ grater than e.g. 0.03
 - recombine surviving sub-jets into a groomed jet
- Pruning
 - run Cambridge-Aachen algorithm on jet constituents
 - during clustering of old-constituents *i* and *j* the softer constituent is removed if

$$z_{ij} = \frac{\min(p_{T,i}, p_{T,j})}{p_{T,i} + p_{T,j}} < z_{\text{cut}}$$
$$\Delta R_{i,j} > D_{\text{cut}} = \frac{2 r_{\text{cut}} m_{\text{orig}}}{p_{T,\text{orig}}}$$

- typical size of parameters: $z_{cut} = 0.1$, $r_{cut} = 0.5$
- Other methods: filtering, mass drop.

Subtracting mass

Jet shapes

• N-subjettiness:

$$\tau_N = \frac{1}{d_0} \sum_k p_{\mathrm{T}k} \cdot \min(\Delta R_{1k}, \Delta R_{2k}, ..., \Delta R_{Nk})$$
$$d_0 \equiv \sum_k p_{\mathrm{T}k} \cdot R$$

- reclustering the jet with kt algorithm, requiring to find N subjets
- distances between subjet axes and constituents
- also ratios of t_N can be used
- kt splitting scale

$$\sqrt{d_{12}} = \min(p_{\mathrm{T}}^1, p_{\mathrm{T}}^2) \cdot \Delta R_{12}$$

- transverse momenta of subjets and the distance between them