

The OPERA Experiment

Latest Results

Annika Hollnagel

(annika.hollnagel@desy.de)

on behalf of the OPERA Collaboration

Hamburg University Institute for Experimental Physics

PANIC 2014, Hamburg

bmb+f - Förderschwerpunkt OPERA

Großgeräte der physikalischen Grundlagenforschung OPERA $u_\mu o
u_ au$ Control Sample: Charm $u_\mu o
u_e$ Atmospheric μ Conclusion & Outlook

Neutrino Oscillations

Neutrino oscillation in disappearance mode:

- First observation: SK, MACRO...
- Further studies: SNO, MINOS, KamLAND, Borexino...

Neutrino oscillation in appearance mode:

· Observation needed to establish the picture of neutrino oscillations

Solar scale:

• $\nu_e \rightarrow \nu_\mu$: Below threshold for μ production

Atmospheric scale:

- $\nu_{\mu} \rightarrow \nu_{e}$: Sub-leading (T2K, OPERA)
- $u_{\mu} \rightarrow \nu_{\tau}$: u_{μ} from cosmic rays (SK: statistical analysis, large BG)
- $\nu_{\mu} \rightarrow \nu_{\tau}$: ν_{μ} from long-baseline beams OPERA: τ lepton identification on an event-by-event basis

The OPERA Experiment

The OPERA experiment in the CERN to Gran Sasso neutrino beam, JINST **4** (2009) P04018

The OPERA Experiment

OPERA: Oscillation Project with Emulsion Tracking Apparatus

- Appearance search: Direct observation of $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillations detection of τ production & decay
- Characteristic 'kink' topology:

- ν beam: High-intensity & high-energy long-baseline ν_{μ} beam
- **Detector:** Large target mass, high precision $\mathcal{O}(\mu m)$
- Location: Laboratori Nazionali del Gran Sasso (LNGS) 1400 m rock coverage, 3800 m w.e.

- $\frac{L}{\langle E \rangle} \sim 43 \, \frac{\mathrm{km}}{\mathrm{GeV}}$
- $\triangleright \ \ P(\nu_{\mu} \rightarrow \nu_{\tau}) \, \mathcal{O}(1 \, \%)$
- u_{μ} energy optimised for au detection

(CC au production threshold: 3.5 GeV)

UH

The OPERA Detector

Hybrid detector (ED & ECC):

- 2 identical Super Modules (SM) + VETO system
- Spectrometer: RPC & XPC, PT
- Target Area: TT, ECC bricks

UH

Emulsion Cloud Chamber (ECC) bricks:

- 57 \times 2 AgBr nuclear emulsions on plastic bases, interleaved with 56 lead plates (\sim 10 X_0)
- Total: $\sim 150\,000 \times 8.3\,\mathrm{kg}$ $\sim 1.25\,\mathrm{kt}$ total target mass
- Spatial / angular resolution: $~~\sim 1\,\mu{\rm m}$ / $\sim 2\,{\rm mrad}$

Ш

The OPERA Detector

Changeable Sheets (CS):

• 2 extra nuclear emulsion sheets per brick

Target Tracker (TT) detectors:

• Plastic scintillator strips (horizontal & vertical), 31 walls per SM

 ${\sf OPERA} \ \ \nu_\mu \to \nu_\tau \ \ {\sf Control Sample: Charm} \ \ \nu_\mu \to \nu_e \ \ {\sf Atmospheric} \ \mu \ \ {\sf Conclusion} \ \& \ {\sf Outlook}$

The OPERA Detector

Magnetic Spectrometer:

- Downstream of each target area
- Magnets: Iron core dipole, 1.55 T
- RPC, XPC: Resistive plate chambers
- Precision Tracker (PT): $\sim 10\,000$ drift tubes

UH

ED event reconstruction:

- Time resolution: $\mathcal{O}(ns)$
- μ identification, charge & momentum measurement
- Hadronic shower energy reconstruction
- ν interaction brick localisation
- ▷ Trigger: ECC event reconstruction

лн

Event Reconstruction

ECC event reconstruction:

- Spatial resolution: $\mathcal{O}(\mu m)$
- 3D track segment & track reconstruction
- ν interaction vertex localisation
- Decay search procedure:
- ▷ kink angle / IP measurement, parent / daughter search...
- Momentum measurement via MCS

Oscillation Search: $\nu_{\mu} \rightarrow \nu_{\tau}$

Observation of ν_{τ} appearance in the CNGS beam with the OPERA experiment, arXiv:1407.3513 (accepted by PTEP)

$\nu_{\mu} \rightarrow \nu_{\tau}$ Oscillation Search

4 ν_{τ} candidate events:

Hamburg University

UH

26.08.2014 The OPERA Experiment

The 4th ν_{τ} Candidate Event

ED reconstruction:

The 4th ν_{τ} Candidate Event

ECC reconstruction:

- 1ry vertex: 4 tracks
- Red track: 1-prong decay after 1.09 mm
- \triangleright **Decay channel:** $\tau \rightarrow h$

Ш

• 1ry vertex track 2: Stopping in 1st magnet iron slab

▷ Hadron (
$$p = 1.9^{+0.3}_{-0.2} \, \text{GeV/c}$$
)

- Daughter track: Stopping ist 1st magnet
- ▷ Hadron ($p = 6.0^{+2.2}_{-1.2} \, {\rm GeV/c}$)

Hamburg University

$\nu_{\mu} \rightarrow \nu_{\tau}$ Oscillation Search

Fully analysed data sample: 4685 events

- 2008/09: 1st & 2nd most probable bricks
- 2010/11/12: 1st most probable brick
- 0 μ events & 1 μ events with $p_\mu < 15\,{\rm GeV/c}$

au decay	Signal	Total BG	Data
channel	(exp.)	(exp.)	(obs.)
	$\Delta m^2_{23}=2.32\mathrm{meV}^2$		
au ightarrow h	0.41 ± 0.08	$\textbf{0.033} \pm \textbf{0.006}$	2
au ightarrow 3h	0.57 ± 0.11	0.155 ± 0.030	1
$\tau \to \mu$	$\textbf{0.52}\pm\textbf{0.10}$	0.018 ± 0.007	1
$\tau \to \mathbf{e}$	$\textbf{0.62}\pm\textbf{0.12}$	0.027 ± 0.005	0
Total	2.11 ± 0.42	0.233 ± 0.041	4

Observation of ν_{τ} **appearance:**

- p-value: 1.24×10^{-5} (Fisher) / 1.03×10^{-5} (Likelihood)
- \triangleright No-oscillation hypothesis excluded @ 4.2 σ

OPERA $u_{\mu}
ightarrow
u_{ au}
ightarrow
u_{\mu}
ightarrow
u_{e}$ Atmospheric μ Conclusion & Outlook

$\nu_{\mu} \rightarrow \nu_{\tau}$ Oscillation Search

$$N_{\nu_{\tau}} \propto \int \Phi(E) \sin^2\left(\frac{\Delta m_{23}^2 L}{4E}\right) \epsilon(E) \sigma(E) dE \propto (\Delta m_{23}^2)^2 L^2 \int \Phi(E) \epsilon(E) \frac{\sigma(E)}{E^2} dE$$

First measurement of Δm_{23}^2 in appearance mode:

- $\Delta m_{23}^2 = [1.8 5.0] \times 10^{-3} \, \mathrm{eV}^2$ (Feldman&Cousins)
- $\Delta m_{23}^2 = [1.9 5.0] \times 10^{-3} \,\mathrm{eV}^2$ (Bayes)

(for $\sin^2(2\theta_{23}) = 1$ at 90% C.L.)

Control Sample: Charmed Particle Decays

Procedure for short-lived particle detection in the OPERA experiment and its application to charm decays, Eur. Phys. J. C **74** (2014) 2986

- Topology similar to τ decay
- μ at 1ry vertex

Other BG:

- Hadronic re-interactions in lead
- Large-angle μ scattering

OPERA $\nu_{\mu} \rightarrow \nu_{\tau}$ Control Sample: Charm $\nu_{\mu} \rightarrow \nu_{e}$ Atmospheric μ Conclusion & Outlook **Control Sample: Charmed Particle Decays**

2008 – 2010 OPERA data:

	Charm	BG	Total	Data
	(exp.)	(exp.)	(exp.)	(obs.)
1-prong	21 ± 2	9 ± 3	30 ± 4	19
2-prong	14 ± 1	4 ± 1	18 ± 1	22
3-prong	4 ± 1	1.0 ± 0.3	5 ± 1	5
4-prong	0.9 ± 0.2	-	0.9 ± 0.2	4
Total	40 ± 3	14 ± 3	54 ± 4	50

Oscillation Search: $\nu_{\mu} \rightarrow \nu_{e}$

Search for $\nu_{\mu} \rightarrow \nu_{e}$ oscillations with the OPERA experiment in the CNGS beam, JHEP **1307** (2013) 004

ECC reconstruction:

A ν_e **Event**

ED reconstruction:

UΗ

Systematic ν_e Event Selection

CS em shower hints:

- Interpolation of 1ry vertex tracks to CS
- Expanded scan volume
- Analysis of downstream bricks

Backgrounds:

- ν_e from intrinsic beam contamination
- e^+e^- from π^0 decays misidentified as single-e
- u_{τ} CC interactions with $\tau \rightarrow e$

$2008 + 2009 \nu_e$ candidate events (reconstructed energy)

Cuts on $E_{\nu,rec}$: Separation of signal & BG

Energy cut		$20\mathrm{GeV}$	$30{ m GeV}$	No cut
BG common to	BG (a) from π^0	0.2	0.2	0.2
both analyses	BG (b) from $\tau \to e$	0.2	0.3	0.3
	ν_e beam contamination	4.2	7.7	19.4
Total expected BG in 3-f	Total expected BG in 3-flavour oscillation analysis			
BG to non-standard	ν_e via 3-flavour oscillation	1.0	1.3	1.4
oscillation analysis only				
Total expected BG in no	5.6	9.4	21.3	
Data	4	6	19	

Assumptions:

)PER/

ш

2008 + 2009 data sample:

- 5255 ν CC interactions (5.25 × 10¹⁹ p.o.t.)
- $\triangleright \nu_e$ candidates: 19 events

Separation: Beam contamination and oscillated ν_e

- ν energy cut: $E_{\nu,rec} < 20 \, \text{GeV}$
- Expected BG: 4.6 events
- Expected signal: 1.0 events
- \triangleright **Remaining** ν_e candidates: 4 events

Compatible with no-oscillation hypothesis:

• $\sin^2(2\theta_{13}) < 0.44$ (90% C.L.)

PERA $\,
u_\mu o
u_ au$ Control Sample: Charm $\,
u_\mu o
u_e$ Atmospheric μ Conclusion & Outlo

Oscillation Analysis: Non-Standard

Separation: BG and oscillated ν_e

- ν energy cut: $E_{\nu,rec} < 30 \,\mathrm{GeV}$
- Expected BG: 9.4 events
- \triangleright **Remaining** ν_e candidates: 6 events

 $P_{\nu_{\mu} \rightarrow \nu_{e}} = \sin^{2}(2\theta_{new}) \cdot \sin^{2}(1.27 \cdot \Delta m_{new}^{2} L[\mathrm{km}]/E[\mathrm{GeV}])$

UH

Atmospheric μ : TeV-Range

Measurement of TeV atmospheric muon charge ratio with the full OPERA data, Eur. Phys. J. C **74** (2014) 2933

Atmospheric μ : TeV-Range

Atmospheric μ charge ratio:

$$R_{\mu} = rac{N_{\mu^+}}{N_{\mu^-}} \quad (R_{\pi} = rac{Z_{N_{\pi^+}}}{Z_{N_{\pi^-}}}, \ R_K = rac{Z_{N_{K^+}}}{Z_{N_{K^-}}})$$

- Study of cosmic ray interactions in the atmosphere
- Constraints on hadronic interaction models
- Main contributions from π (low energies) & K (high energies)

Atmospheric μ @OPERA:

- LNGS: $1 \mu \,\mathrm{m}^{-2} \mathrm{h}^{-1}$ ($\mathcal{O}(\mathrm{TeV})$ surface energy)
- $\triangleright~$ Reduced by $\sim 10^{6}$ w.r.t. surface
- Charge-symmetric detector:

Measurement at opposite magnetic field polarities

Minimisation of systematic uncertainties

- Single μ : $R_{\mu}(n_{\mu} = 1) = 1.377 \pm 0.006(stat.)^{+0.007}_{-0.001}(syst.)$
- Multiple μ : $R_{\mu}(n_{\mu} > 1) = 1.098 \pm 0.023(stat.)^{+0.015}_{-0.013}(syst.)$
- $\triangleright \ R_{\mu}$ for single μ compatible with simple πK model
- ho
 ightharpoon
 ho No sign. contribution of prompt component for $\epsilon_\mu\cos heta^*\lesssim 10\,{
 m TeV}$
- ho~ Feynman scaling in the fragmentation region for $\epsilon_\mu \lesssim 20~{
 m TeV}$

Ш

Conclusion & Outlook

Conclusion & Outlook

Oscillation Search: $\nu_{\mu} \rightarrow \nu_{\tau}$

- 4 ν_{τ} candidate events observed (0.23 BG events expected)
- \triangleright Observation of $u_{ au}$ appearance at 4.2σ
- ▷ First measurement of Δm_{23}^2 in appearance mode
- Non-standard analysis: Limits on Δm_{41}^2 , $|U_{\mu4}|^2 \& |U_{\tau4}|^2$...

Oscillation Search: $\nu_{\mu} \rightarrow \nu_{e}$

- 3-flavour analysis: Compatible with no-oscillation hypothesis
- Non-standard analysis: New limits on non-standard oscillations

Atmospheric μ :

• Measurement of R_{μ} at $\mathcal{O}(\text{TeV})$

Conclusion & Outlook

Analysis status:

- CNGS beam (2008 2012): 1.8×10^{20} p.o.t., 19505 ν interactions
- Vertex located: 6636 interactions
- Decay search performed: 6190 interactions

Ш

🖁 Hamburg University

Backup Slides

CNGS Roadmap

Schematic view (ECC reconstruction):

The 4th ν_{τ} **Candidate Event**

Track features:

					Fi measu	rst rement	Second measurement		Average		
	Track I	D	Partic	le ID	Slopes		Slopes	Slo	opes	P (GeV/c)	
1ry	1 parer	nt	τ		-0.143, 0.026		-0.145, 0.014	-0.	144, 0.020	- 1	
	2		Had (Rar	ron 1ge)	-0.044, 0.082		-0.047, 0.073	-0.	.046, 0.078	1.9 [1.7, 2.2]	
	3		Hadron (interact)		0.122, 0.149 0.139, 0.143		0.139, 0.143	0.1	131, 0.146	1.1 [1.0, 1.2]	
	4		pro	ton	-0.083,	0.348	-0.080, 0.355	-0.	.082, 0.352	0.7 [0.6, 0.8] pβ = 0.4 [0.3, 0.5]	
	γ1		e-pair		-0.229, 0.068		-0.238, 0.055	-0.	234, 0.062	0.7 [0.6, 0.9]	
	γ2		e-pair		0.111, -0.014		0.115,-0.034	0.1	13,-0.024	4.0 [2.6, 8.7]	
2ry	daughter Hadron (Range)		ron 1ge)	-0.084, 0.148		-0.091, 0.145	-0.	088, 0.147	6.0 [4.8, 8.2]		
		Δž	Z (µm)	$\delta \theta_{R}$	(mrad)	IP (µm)	IP Resolution (µm	1)	Attachment		
γ1	To 1ry		676		21.9	2	8		ОК		
γ2	To 1ry	1	7176		9.2 33		43	OK			
	To 2ry		6124		9.2	267	36		Excluded		

UHI ...

The 4th ν_{τ} Candidate Event

ED reconstruction:

UН

The 4th ν_{τ} Candidate Event

Track length \times density ($L \times \rho$):

• $L \times \rho = 604 \, {\rm g/cm^2}$ (cut value: $L \times \rho < 660 \, {\rm g/cm^2}$)

•
$$D = \frac{L}{R_{lead}(\rho)} \times \frac{\rho_{average}}{\rho_{lead}} = 0.40^{+0.04}_{-0.05}$$

- Probability for μ to cross \leq 12 planes: \sim 0.4 %
- Probability for π to cross \geq 12 planes: \sim 9.2 %

ш

Reconstructed momentum of the ν_{τ} candidates:

$\nu_{\mu} \rightarrow \nu_{\tau}$ Oscillation Search

Expected number of events for the analysed sample:

Decay	Expected		Expected background			
channel	signal	Observed	Total	Charm	Hadronic	Large-angle
				decays	re-interactions	muon scattering
$\tau \rightarrow 1h$	0.41 ± 0.08	2	0.033 ± 0.006	0.015 ± 0.003	0.018 ± 0.005	/
$\tau \rightarrow 3h$	0.57 ± 0.11	1	0.155 ± 0.030	0.152 ± 0.030	0.002 ± 0.001	/
$ au ightarrow \mu$	0.52 ± 0.10	1	0.018 ± 0.007	0.003 ± 0.001	/	0.014 ± 0.007
$\tau \to e$	0.62 ± 0.12	0	0.027 ± 0.005	0.027 ± 0.005	/	/
Total	2.11 ± 0.42	4	0.233 ± 0.041	0.198 ± 0.040	0.021 ± 0.006	0.014 ± 0.007

Expected number of events:

$\nu_{\mu} \rightarrow \nu_{\tau}$ Oscillation Search

τ selection criteria:

variable	$\tau \to 1 h$	$\tau \rightarrow 3h$	$\tau \to \mu$	$\tau \to e$
lepton-tag		No μ or e at the	e primary vertex	
$z_{dec}~(\mu{ m m})$	[44, 2600]	< 2600	[44, 2600]	< 2600
p_T^{miss} (GeV/c)	$< 1^{\star}$	$< 1^{\star}$	/	/
ϕ_{lH} (rad)	$> \pi/2^{\star}$	$> \pi/2^{\star}$	/	/
p_T^{2ry} (GeV/c)	$> 0.6(0.3)^*$	/	> 0.25	> 0.1
$p^{2ry} \; ({ m GeV}/c)$	> 2	> 3	>1 and <15	> 1 and < 15
$\theta_{kink} \ (mrad)$	> 20	< 500	> 20	> 20
$m, m_{min} \; ({\rm GeV}/c^2)$	/	$>~0.5~{\rm and}<~2$	/	/

au ightarrow h selection criteria & 4th $u_{ au}$ candidate:

Variable	Selection	Measured value
$\theta_{kink} \ (mrad)$	> 20	137 ± 4
$z_{dec} \; (\mu \mathrm{m})$	< 2600	406 ± 30
$p_{2ry} \; ({\rm GeV/c})$	> 2	$6.0^{+2.2}_{-1.2}$
p_T^{2ry} (GeV/c)	$> 0.6 \ (0.3^*)$	$0.82^{+0.30}_{-0.16}$
p_T^{miss} (GeV/c)	< 1	$0.55_{-0.20}^{+0.30}$
$\Delta \phi_{\tau H}$ (degrees)	> 90	166^{+2}_{-31}

$\nu_{\mu} \rightarrow \nu_{\tau}$ Non-Standard Oscillations

3+1 analysis (approx.):

$$\begin{split} P(E) &= C^2 \sin^2(1.27\Delta m_{32}^2 L/E) + 0.5 \sin^2(2\theta_{\mu\tau}) \\ &+ C \sin(2\theta_{\mu\tau}) \cos(\delta) \sin^2(1.27\Delta m_{32}^2 L/E) \\ &+ 0.5 \ C \sin(2\theta_{\mu\tau}) \sin(\delta) \sin(2.54\Delta m_{32}^2 L/E) \end{split}$$

Δm_{41}^2 vs. $\sin^2(2\theta_{\mu\tau})$ (NH): 90 % C.L. exclusion limits

Decay search procedure:

- In-track decay search
- Search for extra tracks (parent / daughters)
- \triangleright Measurement of kink angle θ_{kink} or impact parameter b

Emulsion Cloud Chamber (ECC) nuclear emulsions:

- Basic detector elements: AgBr crystals $(0.2 \,\mu m)$
- \triangleright Intrinsic resolution: 50 nm
- Hadronic momentum measurement: Via MCS
- π/μ separation: Via dE/dx (at low energies)
- e identification, em shower energy estimation

The OPERA Detector

Detector statistics:

UН

3-Flavour Neutrino Oscillations

Mixing of mass & flavour eigenstates:

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \times \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

3-Flavour Neutrino Oscillations

Oscillation parameters:

Parameter	Current best fit
Δm_{31}^2	$(2.55^{+0.06}_{-0.09}) imes 10^{-3}{ m eV}^2$
Δm_{21}^2	$(7.62\pm0.19) imes10^{-5}{ m eV^2}$
$sin^2(heta_{23})$	$0.613\substack{+0.022\\-0.040}$
$sin^2(heta_{12})$	$0.320^{+0.016}_{-0.017}$
$sin^2(heta_{13})$	$0.0246\substack{+0.029\\-0.028}$
δ	$(0.80^{+1.20}_{-0.80})\pi$
Fo	r normal hierarchy

D.V. Forero, M. Tortola, J.W.F. Valle, Global status of neutrino oscillation parameters after Neutrino-2012,

Phys. Rev. D 86 073012 (2012)