

### The highest energy particles: Measurements from the Pierre Auger Observatory

João de Mello Neto for the Pierre Auger Collaboration (Federal University of Rio de Janeiro)

PANIC 2013, Hamburg, Germany

# The highest energy particles

**Unanswered questions about UHECRs:**  $\star$  What are those particles? **Mass composition**  $\star$  Where do they come from? **Production sources ★** How they reach  $E > 10^{20} eV = 100 EeV$ ? **Acceleration mechanisms**  $\star$  Can we extrapolate hadronic models orders of magnitude in energy? **Fundamental interactions** 

#### Their study has impact on ★ Astrophysics

 $\star$  Particle Physics

The true high-energy frontier of physics!

## **Pierre Auger Observatory**



Hybrid detector: improve precision and reduce dependence on models

# **Detecting UHECRs**



#### **Detector Performance**







# Very effective atmospheric monitoring

Bonifazi for Auger Collab, ICRC 2013 Chirinos for Auger Collab, ICRC 2013

#### Auger energy measurements



Energy calibrations to FD energies for all three SD measurements from the energy estimators

#### Auger combined spectrum



highest energies

Schulz for Auger Collab, ICRC 2013

## Auger combile i special in Son W



## Large scale anisotropy



## Auger upper limits exclude some models.

Phase is more sensitive observable Smooth change of phase away from GC at E > 1 EeV

Sidelnik for Auger Collab, ICRC 2013

For isotropic distribution, expect uniform distribution, uncorrelated in energy

Prescription to check with new data at 99% CL: constancy of phase at E<1 EeV with the Infill data, transition in phase at high energies

# AGN correlation: Auger and Tel. Array



A very good agreement between Auger and TA data

Kampert, Tyniakov, ArXiv 1405.0575

#### **Composition measurement**



#### **Composition measurement**



At the highest energies  $\langle X_{max} \rangle$ ,  $\sigma(X_{max})$ , muon production depth and shower depth from asymmetry of risetimes show consistently that our data better resemble the simulations of heavier primaries than pure protons.

> V. de Souza, Auger Collab, ICRC 2013 Auger Collab., PRL 104 091101, 2010

## **Neutrino induced showers**

#### Only a neutrino can induce a young horizontal shower !

![](_page_12_Figure_2.jpeg)

### **Auger neutrino limits**

![](_page_13_Figure_1.jpeg)

#### young $\nu$ induced showers

- ★ wide time distribution in surface stations
- ★ elongated footprint of inclined shower
- ★ propagation speed of shower front at ground

Limits start to dig into potential sources and cosmogenic "GZK" neutrinos

Auger Collab. Astrop. J. Lett, 2012 Pieroni, Auger Collab. ICRC, 2013

### Upper limits on flux of photons

![](_page_14_Figure_1.jpeg)

Photons characterized by: ★ deep Xmax in FD ★ small signal in SD

The observation of a photon flux compatible with the cosmogenic prediction could provide an independent proof of the GZK process

disfavour exotic "particle physics" origin of UHECR

- ★ Models disfavoured down to 1 EeV
- ★ (optimistic) GZK in reach

Auger Collab, Astrop. Phys (2009) M. Settimo, Auger Col., ICRC 2011

### p-Air & pp Cross-Section at 57 TeV

![](_page_15_Figure_1.jpeg)

Auger Collab. Phys. Rev. Lett, 2012

#### **p-Air Cross-Section**

![](_page_16_Figure_1.jpeg)

systematic uncertainties < 0.5% photons < 25% He

mb

Auger Collab. Phys. Rev. Lett, 2012

# **UHECRs and LHC**

#### Inelastic pp Xsec at 57 TeV: standard Glauber theory + propagation of modeling uncertainties

![](_page_17_Figure_2.jpeg)

 $\sigma_{pp}^{\text{inel}} = \begin{bmatrix} 92 \pm 7(\text{stat}) \stackrel{+9}{_{-11}}(\text{sys}) \pm 7(\text{Glauber}) \end{bmatrix} \text{ mb}$  $\sigma_{pp}^{\text{tot}} = \begin{bmatrix} 133 \pm 13(\text{stat}) \stackrel{+17}{_{-20}}(\text{sys}) \pm 16(\text{Glauber}) \end{bmatrix} \text{ mb}$ 

#### Auger Collab. Phys. Rev. Lett, 2012

# **Pseudo-rapidity distributions at LHC and Monte Carlo simulations**

![](_page_17_Figure_6.jpeg)

- ★ central distributions well **bracketed** by the model predictions,
- ★ true predictions as the models were tuned years before LHC data became available

#### **UHECRS 2012 Hadronic Interactions report**

# hadronic models underestimate muons

**Measured event** 

with matching p and Fe-simulations

![](_page_18_Figure_3.jpeg)

## Major achievements - first six years

- **★** Clear observation of **flux suppression**
- $\bigstar$  Strongest existing **bounds** on EeV v and Y
- \* Strongest existing bounds on large scale anisotropies
- **★** First hints on directional **correlations** to nearby matter
- $\star$  Increasingly heavier composition above ankle
- $\bigstar$  pp cross section at ~10\*E<sub>LHC</sub>, LIV-bounds
- $\star$  muon deficit in models at highest energies
- **geophysics** (elves, solar physics, aerosols...)

Auger upgrade: improve muon counting in surface detector array

# Science goals of Auger upgrade

- ★ Elucidate the origin of the flux suppression, GZK vs. maximum energy scenario
  - Fundamental constraints on UHECR sources
  - galactic vs extragalactic origin
  - + reliable prediction of GZK  $\,\nu$  and  $\Upsilon$
- ★ Search for a flux contribution of protons up to the highest energies at a level of ~ 10%
  - proton astronomy up to the highest energies
  - propects of future UHECR experiments
- ★ Study of extensive air showers and hadronic multiparticle production above ~70 TeV
  - particle physics beyond man-made accelerators
  - derivation of constraints on new physics phenomena

### Conclusion

- ★ The Pierre Auger experiment is complete since 2008 and it is taking data since 2004
- ★ Very robust hybrid technique to detect CRs at the highest energies Many interesting results on astrophysics and particle physics
- Measurement of the spectrum suppression: GZK or maximum energy scenario?
- Large scale anisotropy:

★Most stringent upper limits at present on the amplitudes
★Phase does not follow a random distribution
★With higher statistics the galactic/extragalactic transition may be stablished

• Weak correlation with VCV catalogue

 $\star$ Correlation is stabilizing

- Very competitive neutrino limits
- Stringent limits on photon primaries and top-down models
- Measurement of p-air cross section at 57 TeV
- Working on upgrades muon detectors

# Thank you