

European Research Council

Searching for New Physics in b-hadron decays

Thomas Latham

on behalf of the LHCb experiment including results from other experiments

27th August 2014

20th Particles & Nuclei International Conference

25-29 August 2014 Hamburg, Germany

Overview

- Quark flavour physics state of the art
- Improving the precision
- A few anomalies appear
- New territory
- Conclusions

Introduction

- Flavour physics is complementary approach to energy frontier searches in effort to uncover "New Physics"
 - This has been repeatedly demonstrated through the history of particle physics (e.g. CP violation pointing the way to the 3rd generation)
 - And is quite clear today (e.g. constraints on SUSY parameter space from branching fraction of $B_s \rightarrow \mu^+ \mu^-$)
- Many of the puzzles in the SM lie in the flavour realm:
 - CP violation (links to matter-antimatter asymmetry of universe and cosmology!)
 - Fermion mass hierarchy & number of generations
 - Values of CKM (and PMNS!) matrix parameters
- **B**-physics is an excellent laboratory to study these with great precision

B physics is a worldwide effort

The state of the art

CKM mechanism

- Standard Model description of quark coupling to weak interaction
- CPV arises due to complex phase in the mixing matrix
- Convenient representation for *b*-hadron physics is the Unitarity Triangle
- Angles and side lengths can be measured through various *B*-decay processes

Current status

- CKM mechanism agrees well with experiment
- But still room for new physics at ~10-20% level
- Vital to measure CP violating observables in as many different decay processes as possible
- Look for disagreements

Current status

- CKM mechanism agrees well with experiment
- But still room for new physics at ~10-20% level
- Vital to measure CP violating observables in as many different decay processes as possible
- Look for disagreements

Increasing precision reveals the cracks?

UT angle γ

- Least well determined Unitarity Triangle angle:
 - BaBar: (69 ⁺¹⁷₋₁₆)°
 [Phys. Rev. D 87 (2013) 052015]
 - Belle: (68 ⁺¹⁵₋₁₄)° [arXiv:1301.2033]
 - LHCb: (67 ± 12)° [LHCb-CONF-2013-006]
- Only angle that can be measured in pure tree-level processes
 - SM "standard candle"
 - − Theoretically very clean $\delta \gamma / \gamma \leq O(10^{-7})$ [JHEP 01 (2014) 051]
- Need better precision

$$\gamma = \arg\left(\frac{-V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$$

Methodology

• Measured through interference of two tree diagrams

- Hence D and \overline{D} must decay to same final state
 - CP-eigenstate (e.g. K⁺K⁻): GLW method
 - Suppressed/favoured (e.g. $K^-\pi^+$ or $K3\pi$): ADS method
 - Multi-body flavour-conjugate state (e.g. $K_s \pi^+ \pi^-$): GGSZ method

LHCb GGSZ Analysis

- Need to know strong phase variation over DP
 - Can use a model, e.g. from BaBar [PRL 105, 081803 (2010)]
 - Can use CLEO-c measurements in DP bins [PRD 82, 112006 (2010)]
 - As first done by Belle [PRD 85, 112014 (2012)]
- Show LHCb results from latter method using full Run1 dataset (3fb⁻¹)

$$N_{\pm i}^{+} = h_{B^{+}} \left[F_{\mp i} + (x_{+}^{2} + y_{+}^{2}) F_{\pm i} + 2\sqrt{F_{i}F_{-i}} (x_{+}c_{\pm i} - y_{+}s_{\pm i}) \right]$$

- N⁺ = # of D from B⁺ events in bin ±i
- F_i = fraction of pure D⁰ events in bin i determined from $B^0 \rightarrow D^*(D^0\pi^+)\mu^-\nu$ LHCb data
- c and s are average cosine and sine of strong phase difference (δ_D) in bin i: CLEO-c inputs
- x and y are real and imaginary part of amplitude ratio:

$$x_{\pm} = r_B \cos(\delta_B \pm \gamma)$$
$$y_{\pm} = r_B \sin(\delta_B \pm \gamma)$$

• Simultaneous fit to B candidate invariant mass in all bins of DP to determine x and y

LHCb GGSZ Results

Fit to both K_sππ and K_sKK final states yields:

 $\begin{aligned} x_{+} &= (-7.7 \pm 2.4 \pm 1.0 \pm 0.4) \times 10^{-2}, \\ y_{+} &= (-2.2 \pm 2.5 \pm 0.4 \pm 1.0) \times 10^{-2}, \\ x_{-} &= (2.5 \pm 2.5 \pm 1.0 \pm 0.5) \times 10^{-2}, \\ y_{-} &= (7.5 \pm 2.9 \pm 0.5 \pm 1.4) \times 10^{-2}, \end{aligned}$

- Which gives the following results for the physical parameters:
- Single most precise measurement of γ!
 - cf. (66.4 ^{+1.2}-3.3)° from CKMfitter global fit (excluding direct measurements)
- Other LHCb analyses being updated to full data sample – expect new combination soon

B_s mixing phase

- Neutral *B* mesons exhibit mixing through box diagram
- Decays to CP eigenstates allow to probe the mixing phase $\phi_{\rm s}$ through interference
- SM value is small $\phi_s \approx$ (-0.0363 ± 0.0016) rad
- Many new physics models can enhance value

$B_s \rightarrow J/\psi \phi$

- Experimentally clean
- However, vector-vector final state is admixture of CP eigenstates
- Requires an angular analysis to disentangle CP-odd and CP-even components
 - Angles ϕ_T , θ_T , ψ_T defined in transversity basis
- Signal model sum of terms containing angular and time dependence
 - Sensitivity to mixing phase enters in sine and sinh terms in time dependence

Experimental

- Need to tag the flavour of the B_s at production
 - Can use flavour-specific decays of other *b*-hadron in event
 - Or use particles (e.g. charged kaons) associated with hadronisation of signal B_s

Experimental

- Also need to account for:
 - Efficiency as a function of angles and time
 - Resolution on angular and time measurements

- ATLAS and CMS results from $B_{\rm s}$ decay to $J/\psi \phi$
- LHCb result shown is combination of $J/\psi K^+ K^-$ and $J/\psi \pi^+ \pi^-$ channels
- LHCb also have recent update of J/ψ $\pi^+ \pi^-$ with full Run 1 sample of 3fb⁻¹

 $\phi_s = 70 \pm 68 \pm 8 \text{ mrad}$

• Single most precise measurement! [Phys. Lett. B736 (2014) 186]

World Average

- Official HFAG average (top plot) contains preliminary ATLAS result and does not yet include CMS result or LHCb update of $J/\psi \pi^+ \pi^-$
- Bottom plot shows how these results are likely to improve the situation
- Everything still looks consistent with SM expectations
- Look forward to increasing precision from LHC experiments in the near future

 $V_{\rm ub}/V_{\rm cb}$

- Some persistent puzzles in semi-leptonic B decays
 - Poor consistency
 between values of V_{xb}
 measured in inclusive
 and exclusive decays
 - Measurements of exclusive semi-leptonic B to charm decays are well short of inclusive rate

Adapted from Sascha Turczyk at CKM 2012 Workshop

charm state X _c	$\mathcal{B}(B \to X_c \ell \overline{\nu})$
D	$(2.29 \pm 0.09)\%$
D*	$(5.43 \pm 0.17)\%$
$\sum D^{(*)}$	$(7.71 \pm 0.19)\%$
$D_0^* o D\pi$	$(0.41 \pm 0.08)\%$
$D_1^* \to D^* \pi$	$(0.45 \pm 0.09)\%$
$D_1 \rightarrow D^* \pi$	$(0.43 \pm 0.03)\%$
$D_2^* ightarrow D^{(*)} \pi$	$(0.41 \pm 0.03)\%$
$\sum D^{**} ightarrow D^{(*)} \pi$	$(1.70 \pm 0.12)\%$
$D\pi$	$(0.66 \pm 0.08)\%$
$D^*\pi$	$(0.87 \pm 0.10)\%$
$\sum D^{(*)}\pi$	$(1.53 \pm 0.13)\%$
$\sum D^{(*)} + \sum D^{**} \to D^{(*)}\pi$	$(9.41 \pm 0.22)\%$
$\sum D^{(*)} + \sum D^{(*)}\pi$	$(9.24 \pm 0.23)\%$
inclusive X_c	$(10.98 \pm 0.14)\%$

inclusive – exclusive: $(1.57 \pm 0.26)\%$

 $\frac{1}{PRL 109, 101802 (2012)}{PRD 88, 072012 (2013)} B \longrightarrow D^{(*)} \tau v$

• Measure ratios:

$$R(D^{(*)}) = \frac{BF(\overline{B} \to D^{(*)}\tau^{-}\overline{\nu}_{\tau})}{BF(\overline{B} \to D^{(*)}l^{-}\overline{\nu}_{l})} = \frac{N_{\text{sig}}}{N_{\text{norm}}} \times \frac{\varepsilon_{\text{norm}}}{\varepsilon_{\text{sig}}}$$

BaBar sees deviation of 3.4σ from SM predictions

Including Belle results takes this up to 4.8
$$\sigma$$

hep-ex/0910.4301 PRD 82, 072005 (2010)

$$R(D) = \begin{cases} 0.440 \pm 0.072 & BABAR\\ 0.297 \pm 0.017 & SM \end{cases} \left. \begin{array}{c} \mathbf{2.0\sigma} \\ \mathbf{3.4\sigma} \\ \mathbf{3.4\sigma} \\ R(D^*) = \begin{cases} 0.332 \pm 0.030 & BABAR\\ 0.252 \pm 0.003 & SM \end{cases} \right. \left. \begin{array}{c} \mathbf{2.7\sigma} \\ \mathbf{2.7\sigma} \end{array} \right. \right\}$$

PANIC 2014, Hamburg, 25-29 August 2014

PRL 109, 101802 (2012) PRD 88, 072012 (2013)

$B \rightarrow D^{(*)} \tau v$

hep-ex/0910.4301 PRD 82, 072005 (2010)

- Results are also incompatible (at 3.1σ) with Type-II 2 Higgs Doublet Models of charged Higgs
 - R(D) and R(D*) not in agreement in such models
 - Can be accommodated within Type-III 2HDM

- BaBar results can be improved with additional decay modes/tags
- Final results from full Belle dataset awaited with much anticipation!

$B \rightarrow D^{(*)} \pi^{\pm}(\pi^{\mp}) / v$

- Largest uncertainty in $B \rightarrow D^{(*)} \tau v$ analysis is from D^{**} backgrounds
- Good to have (better) measurements of these
- Can hopefully also help with "gap" in inclusiveexclusive BFs
- Use full reconstruction of "tag" *B* to constrain kinematics of signal *B*

Sourco	Uncerta		
Source	R(D)	$R(D^*)$	ρ
$D^{**}\ell\nu$ background	5.8	3.7	0.62
MC statistics	5.0	2.5	-0.48
Cont. and $B\overline{B}$ bkg.	4.9	2.7	-0.30
$\varepsilon_{ m sig}/arepsilon_{ m norm}$	2.6	1.6	0.22
Systematic uncertainty	9.5	5.3	0.05
Statistical uncertainty	13.1	7.1	-0.45
Total uncertainty	16.2	9.0	-0.27

Systematic uncertainties in *B* -> $D^{(*)} \tau v$

 $B \rightarrow D^{(*)}\pi^{\pm}(\pi^{\mp})/\nu$

- First measurements of $B \rightarrow D^{(*)}\pi^+\pi^- l\nu$ decays
 - $-D\pi^+\pi^-lv$: combined significance = 5.1 σ
 - $-D^*\pi^+\pi^-lv$: combined significance = 3.5 σ
- Results for $B \rightarrow D^{(*)}\pi^{\pm}lv$ decays are more precise than previous measurements
- The inclusive–exclusive gap is reduced by ~60% (significance drops from ~7σ to ~3σ)
- Should help to reduce systematic uncertainties on future $B \rightarrow D^{(*)}\tau v$ analyses

$b \rightarrow s l^+ l^-$

- Such rare decays proceed through penguin and box diagrams in SM
- Wilson coefficients encode strength of short-distance interactions:
 - C_7 : EM ($b \rightarrow s\gamma, b \rightarrow sII$)
 - C_9 : semi-leptonic vector ($b \rightarrow sll$)
 - C_{10} : s-l axial vector ($b \rightarrow sll, B^0_s \rightarrow \mu^+ \mu^-$)

- Many New Physics models predict additional contributions to decay amplitude at similar level to SM
- Observables (branching fractions, angular moments, CP asymmetries, etc.) depend on q² (4-momentum transferred to dimuon system)

Inclusive $B \rightarrow X_s I^+ I^-$

Red band is SM prediction

- Belle have made first measurement of forwardbackward asymmetry for inclusive $B \rightarrow X_s l^+ l^-$
- Use sum of 10 exclusive final states (both B⁰ and B⁺)
- Data sample of 772 × 10⁶ B meson pairs
- A_{FB} < 0 excluded at 2.3σ in region above 10.2 (GeV/c)²
- Deviation from SM of 1.8σ in first bin (< 4.3 (GeV/c)²)

Phys. Rev. Lett. 111, 191801

 $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

- LHCb now making high precision measurements in this sector
- A few anomalies starting to appear
- Analysis of "optimised" angular observables [JHEP 1204 (2012) 104] using 1fb⁻¹ data sample
- Large (3.7σ) local deviation found in one bin of P₅'
 - Global p-value is 0.5%

 Uncertainties on residual form factor dependence a hot topic in theory community

JHEP 1308 (2013) 131 JHEP 1307 (2013) 084 JHEP 1406 (2014) 133

Global fits suggest reduced value of C₉ coefficient

(e.g. [Phys.Rev. D88 (2013) 074002], [Eur.Phys.J. C73 (2013) 2646] and [Eur.Phys.J. C74 (2014) 2897])

- If so, would expect BFs to also be low
- LHCb has measured BFs for $B \rightarrow K^{(*)}\mu^+\mu^- \& B_s \rightarrow \phi\mu^+\mu^-$
- Indeed they are low wrt predictions from Lattice (arXiv:1310.3207 [hep-ph], Phys.Rev.Lett. 112 (2014) 212003) and LCSR (JHEP 1201 (2012) 107, JHEP 1107 (2011) 067)

- Possible explanation for low C₉ from Z' particle (e.g. [arXiv: 1310.1082])
- Some Z' models favour muon coupling over electron (e.g. [arXiv:1403.1269])
- Predict $BF(B^+ \rightarrow K^+ \mu^+ \mu^-)$ lower than $BF(B^+ \rightarrow K^+ e^+ e^-)$
- LHCb has preliminary measurement of ratio using full Run1 sample of 3fb⁻¹
- Deviates from SM (unity) by 2.6σ

$$R_{K} = \frac{BF(B^{+} \rightarrow K^{+}\mu^{+}\mu^{-})}{BF(B^{+} \rightarrow K^{+}e^{+}e^{-})}$$
$$= 0.745^{+0.090}_{-0.074} \pm 0.036$$

- Much still to be understood however!
- Importance of cc resonances at high q²
- Update measurements with full data sample
- Look at other modes, e.g. $\Lambda b \rightarrow \Lambda \mu^+ \mu^-$ and $B^+ \rightarrow K^+ \pi^+ \pi^- l^+ l^-$

Dimuon charge asymmetry

- CP violation in mixing => $\Gamma(B^0_{(s)} \to \overline{B}^0_{(s)} \to \mu^- X) \neq \Gamma(\overline{B}^0_{(s)} \to B^0_{(s)} \to \mu^+ X)$ Asymmetry is combination of semi-leptonic charge asymmetries of B_d^{0} and B_s^{0}
- $\mathbf{x}_{1}(\mathbf{x}_{1}+\mathbf{x}_{2})$

$$A_{sl} = \frac{N(\mu^{*}\mu^{*}) - N(\mu^{*}\mu)}{N(\mu^{*}\mu^{*}) + N(\mu^{-}\mu^{-})}$$

$$= C_{d}a_{sl}^{d} + C_{s}a_{sl}^{s} + C\frac{\Delta\Gamma_{d}}{\Gamma_{d}}$$

$$a_{sl}^{q} = \frac{\Gamma(\overline{B} \to \mu^{*}X) - \Gamma(B \to \mu^{-}X)}{\Gamma(\overline{B} \to \mu^{*}X) + \Gamma(B \to \mu^{-}X)}$$

- Corrected for backgrounds use single muon asymmetry to help reduce systematic uncertainties
- Also correct for CP violation from interference between mixing and decay

Dimuon charge asymmetry

• D0 find:

 $A_{sl} = (-0.496 \pm 0.153 \pm 0.072) \times 10^{-2}$

• cf. SM prediction:

 $A_{sl}^{SM} = (-0.023 \pm 0.004) \times 10^{-2}$

- Interpretation in terms of $a^d{}_{sl}$ and $a^s{}_{sl}$ depends strongly on value of $\Delta\Gamma_d/\Gamma_d$
- Plots shows contours for two scenarios:
 - $\Delta \Gamma_d / \Gamma_d$ fixed to SM expectation
 - ΔΓ_d/Γ_d fixed to world average experimental value
- Discrepancy with SM point is 3.4σ or 1.9σ, respectively
- Allowing $\Delta \Gamma_d / \Gamma_d$ to float results in 3.0 σ deviation
- Important to improve the precision of $\Delta\Gamma_d/\Gamma_d$ in the future
 - Recent measurement from LHCb:
 -0.044 ± 0.025 ± 0.011 [JHEP 1404 (2014) 114]

PANIC 2014, Hamburg, 25-29 August 2014

Large A_{CP} in charmless *B* decays

- LHCb analysis of $B^{\pm} \rightarrow h^{+}h^{-}h'^{\pm}$ decays using full Run1 data sample
- CP asymmetries seen in inclusive measurements

Preliminary

 $A_{CP}(B^{\pm} \to K^{\pm}\pi^{+}\pi^{-}) = +0.025 \pm 0.004 \,(\text{stat}) \pm 0.004 \,(\text{syst}) \pm 0.007 (J/\psi \, K^{\pm})$ $A_{CP}(B^{\pm} \to K^{\pm}K^{+}K^{-}) = -0.036 \pm 0.004 \,(\text{stat}) \pm 0.002 \,(\text{syst}) \pm 0.007 (J/\psi \, K^{\pm})$ $A_{CP}(B^{\pm} \to \pi^{\pm}\pi^{+}\pi^{-}) = +0.058 \pm 0.008 \,(\text{stat}) \pm 0.009 \,(\text{syst}) \pm 0.007 (J/\psi \, K^{\pm})$ 4.2σ

 $A_{CP}(B^{\pm} \to \pi^{\pm} K^{+} K^{-}) = -0.123 \pm 0.017 \,(\text{stat}) \pm 0.012 \,(\text{syst}) \pm 0.007 (J/\psi \, K^{\pm})$ **5.60**

• Asymmetries in some regions of the phase space are even more pronounced

Large A_{CP} in charmless *B* decays

Large positive asymmetries at low $m_{\pi\pi}^2$

Large negative asymmetries at low m^2_{KK}

[PRL 112, 011801 (2014)]

Large A_{CP} in charmless B decays

- Larger data samples allow more detail to be extracted than previous analyses: [PRL 111, 101801 (2013)]
- Want to understand the origin of the strong-phase difference
- Examine dependence of asymmetry as function of invariant mass and helicity angle in regions around resonances, e.g. for π⁺π⁺π⁻

DP analysis of $B^+ \longrightarrow K_{\rm S} \, \pi^+ \, \pi^0$

- Model contains K^{*}(892), Kπ S-wave and ρ(770) contributions
- Both charged and neutral K^{*}'s included
- Kπ S-wave modelled using LASS parameterisation (coherent sum of K^{*}₀(1430) resonance and effective range nonresonant terms) [Nucl. Phys. B296, 493 (1988)]

Direct CP Violation

- First evidence of direct CP violation in $B^+ \rightarrow K^{*+}\pi^0$
- 3.4σ significance estimated including statistical, systematic and model uncertainties
- A_{CP} for $B^+ \rightarrow K^{*0}\pi^+$ consistent with zero (as expected)

Decay channel	A_{CP}
$K^0\pi^+\pi^0$	$0.07 \pm 0.05 \pm 0.03 \pm 0.04$
$K^{*0}(892)\pi^+$	$-0.12\pm0.21\pm0.08\pm0.11$
$K^{*+}(892)\pi^{0}$	$-0.52\pm0.14\pm0.04\pm0.04$
$K_0^{*0}(1430)\pi^+$	$0.14 \pm 0.10 \pm 0.04 \pm 0.14$
$K_0^{*+}(1430)\pi^0$	$0.26 \pm 0.12 \pm 0.08 \pm 0.12$
$ ho^+(770)K^0$	$0.21 \pm 0.19 \pm 0.07 \pm 0.30$

New territory

B_c mesons

- Only meson composed of heavy quarks with different flavours
- Largely unexplored territory
 - Production fraction in pp collisions unknown
 - Need better precision on lifetime, mass, etc.
- Very few decay modes observed only 1 c-decay ($B_c \rightarrow B_s \pi$ by LHCb [Phys.Rev.Lett. 111 (2013) 181801]), the rest b-decay modes
- Will show a couple of recent developments in this rapidly changing field

$B_c^+ \rightarrow J/\psi \mu^+ v$ relative cross section

 Measure ratio of B_(c)⁺ production cross section times BF

 $R = \frac{\sigma(B_c^+) \times BF(B_c^+ \rightarrow J/\psi\mu^+\nu_\mu)}{\sigma(B^+) \times BF(B^+ \rightarrow J/\psi K^+)} = \frac{N(B_c^+)}{N(B^+)} \times \varepsilon_{\text{rel}}$ $= 0.211 \pm 0.012_{-0.020}^{+0.021}$

- Compare invariant mass distributions
- Can be compared with LHCb measurements to determine ratio of production fractions at Tevatron and LHC

Observation of an excited *B_c* meson

NEWF

- Search for excited B_c mesons in decay chain: $B_c(2S) \rightarrow B_c \pi \pi; B_c \rightarrow J/\psi \pi$
- Analysis uses 4.9 fb⁻¹ of 7 TeV and 19.2 fb⁻¹ of 8 TeV data
- Results consistent within the two data samples
- Combined significance of 5.2σ
- Mass: 6842 ± 4 ± 5 MeV
- Awaits confirmation from CMS and LHCb

b-baryons

- Largely unexplored territory
- No mixing, so potentially simpler for disentangling some CP effects
- Lots of progress made in last couple of years with lifetime measurements, new decay modes being observed (including some charmless/ rare decays!)
- Will be a very rich field in the coming years
- Need improved theory predictions as well as experimental results

Summary

- With increasingly precise and sophisticated measurements, some anomalies have appeared in the realm of *b*-hadron physics
- Are they hints that we are on the threshold of uncovering New Physics? Hopefully!!
- The coming years will be exciting times as LHC Run 1 data is fully exploited and the data samples from LHC Run 2 are collected and analysed
- Look forward also to the unprecedented precision that will come with the start of Belle II and the LHCb upgrade

Backup Slides

PEP-II and BaBar

Integrated luminosity of B factories

γ from loop-dominated decays

- Preliminary results using latest LHCb results on time-dependent CP violation in $B_s{}^0 \rightarrow K^+K^$ and U-spin symmetry relation with $B^0 \rightarrow \pi^+\pi^-$
- Also include isospin information from *B*factories on ππ system

• Find:

$$\gamma = \left(63.5 \,{}^{+7.2}_{-6.7}\right)^{\circ}$$

ϕ_s from loop-dominated decays

- Use decay $B_s \rightarrow \phi \phi$
- Perform timedependent angular analysis

• Find

 $\phi_s = -0.17 \pm 0.15 \pm 0.03$ rad.

• Consistent with results from $B_s \rightarrow J/\psi h^+h^-$

$B \rightarrow D^{(*)} \pi^{\pm} l v$ Results

$B \rightarrow D^{(*)}\pi^{\pm}(\pi^{\mp})/v$ Results

Comparison with previous results for $D^{(*)}\pi^{\pm}\ell\overline{\nu}$ branching fractions:

BABAR preliminary					
	this result[%] prev. BABAR ^a [%] HFAG				
${\cal B}(B^0 o D^0 \pi^- \ell^+ \overline{ u})$	$0.41 \pm 0.04 \pm 0.03$	$0.43 \pm 0.08 \pm 0.03$	0.43 ± 0.06		
$\mathcal{B}(B^+ \to D^+ \pi^- \ell^+ \overline{\nu})$	$0.40 \pm 0.03 \pm 0.04$	$0.42 \pm 0.06 \pm 0.03$	0.42 ± 0.05		
$\mathcal{B}(B^0 \to D^{*0}\pi^-\ell^+\overline{ u})$	$0.63 \pm 0.04 \pm 0.04$	$0.48 \pm 0.08 \pm 0.04$	0.49 ± 0.08		
$\mathcal{B}(B^+ \to D^{*+} \pi^- \ell^+ \overline{\nu})$	$0.61 \pm 0.03 \pm 0.07$	$0.59 \pm 0.05 \pm 0.04$	0.61 ± 0.05		

- Note, previous BABAR / HFAG values use inclusive $B \to X_c \ell \overline{\nu}$ as normalization
- more precise except for $B^+ \to D^{*+} \pi^- \ell^+ \overline{\nu}$
- some tensions for $B^0 o D^{*0} \pi^- \ell^+ \overline{\nu}$

^aPhys. Rev. Lett. 100, 151802, (2008) ^bHeavy Flavor Averaging Group

Slide from Thomas Lück (ICHEP 2014)

$D^0 \rightarrow \pi^- e^+ v$ and implications for V_{ub}

• Measurement of the $D^0 \rightarrow \pi^- e^+ v$ form factor and branching fraction at BaBar, competitive and in agreement with CLEO-c and BELLE.

 $|V_{cd}| f^{\pi}_{+,D}(0) = 0.1374 \pm 0.0038_{\text{stat.}} \pm 0.0022_{\text{syst.}} \pm 0.0009_{\text{ext.}}$

 $\mathcal{B}(D^0 \to \pi^- e^+ \nu_e) = (2.770 \pm 0.068 \pm 0.092 \pm 0.037) \times 10^{-3}$

- Physics interpretation of the form factor: [Bečirević et al, arXiv:1407.1019 [hep-ph]]
 - The form factor cannot be explained by the D* and D*'₁ contributions.
 - Description in terms of a "three" poles model, being the 3rd pole effective, agrees well with data.
- V_{ub} has been extracted using the information of charm sl data:
 →Using a constant form factor ratio from Lattice.
- \rightarrow Using the "three" poles model.
- Systematics of different origin, hope to be reduced in future by Lattice calculations

ICHEP 2014, Valencia

Arantza Oyanguren

Dimuon charge asymmetry

B-factory Analysis Variables – Topological

- Light quark continuum cross section ~3x $\sigma(b\overline{b})$
- *B* mesons produced almost at rest since just above threshold
- Use event topology to discriminate
- Combine variables in an MVA, e.g. Fisher, Neural Network or Decision Tree

B-factory Analysis Variables – Kinematic

Make use of precision kinematic information from the beams.

Charmless B decays

- Contributions from both loop (penguin) and tree decay diagrams
- These diagrams have a relative weak phase (= γ in SM)
- Interference can therefore give rise to CP violation in decay
- In neutral *B* decays can make time-dependent measurements, allowing measurements of mixing-induced CP asymmetries
- These can be compared with measurements from, e.g. $B^0 \rightarrow J/\psi K_S$, to search for signs of new physics

Dalitz plot analysis

- Intermediate
 resonances appear as
 structures in Dalitz plot,
 characterised by their
 mass, width and spin
- Overlapping resonant contributions lead to interference effects
- Hence the sensitivity to relative phases

Simulated data

$B^+ \rightarrow K_s \pi^+ \pi^0$ Motivation

 Only upper limit exists on inclusive branching fraction, from CLEO collaboration

 $\mathcal{B}(B^+ \to K^0 \pi^+ \pi^0) < 66 \times 10^{-6}$ Phys. Rev. Lett. 89, 251801 (2002)

- Improved measurements of direct CP violation in $B^+ \rightarrow K^{*+}\pi^0$ can shed light onto equivalent of " $K\pi$ puzzle" in $K^*\pi$ system [Phys. Rev. **D81**, 094011 (2010)]
- ΔA_{CP} predicted to be zero
- $A_{CP}(K^{*+}\pi^{-})$ quite precisely measured by BaBar & Belle
- Only previous measurement of $A_{CP}(K^{*+}\pi^0)$ by BaBar, using $A_{\rm CP}(B^+ \to K^{*+}\pi^0) = -0.06 \pm 0.24$ final state $B^+ \rightarrow K^+ \pi^0 \pi^0$

$$\Delta A_{\rm CP} = A_{\rm CP}(K^{*+}\pi^0) - A_{\rm CP}(K^{*+}\pi^-)$$

 $A_{\rm CP}(B^0 \to K^{*+}\pi^-) = -0.23 \pm 0.06$ **HFAG** Average

Phys. Rev. **D84**, 092007 (2011)

$B^+ \rightarrow K_{\rm S} \pi^+ \pi^0$ Motivation

- Relative phases between the two K^{*}π intermediate states can be used to measure CKM angle γ
- Uses the fact that $K^{*0}\pi^+$ is a pure penguin decay
 - Hence Δφ is approximately zero
- In absence of EW penguins $\Phi_{3/2} = \gamma$

Isospin relations

Phys. Rev. D74, 051301 (2006) Phys. Rev. D75, 014002 (2007)

Dalitz plot analysis formalism

• Resonance parameterisation (isobar model):

$${}^{\!\!\!\!(\overline{\mathrm{A}})} = \sum {}^{\!\!\!\!(\overline{\mathrm{A}})}_{i} = \sum {}^{\!\!\!\!(\overline{\mathrm{c}})}_{i} F\left(m_{K_S\pi^+}^2, m_{\pi^0\pi^+}^2\right)$$

Complex coefficients Decay dynamics

- Directly extracted parameters: Re(c_i) & Im(c_i)
- Other quantities (relative phases, BF, A_{CP}) are derived from these

$B^+ \rightarrow K_{\rm S} \pi^+ \pi^0$ Selection and fit

- K_s candidates reconstructed in decay to π⁺π⁻
- Largest B backgrounds removed by vetoing $D^0 \rightarrow K_{\rm S} \pi^0$
- Approx. 32,000 candidates after all selection
- Maximum likelihood fit to $m_{\rm ES}$, ΔE , Boosted Decision Tree (event topology) and DP
- Large correlations between DP position and kinematic variables
- Signal PDFs parameterised as function of DP position
- Signal yield of 1014 ± 63 (statistical uncertainty only)

$B^+ \rightarrow K_{\rm S} \pi^+ \pi^0$ BFs and Phases

Decay channel	$B(10^{-6})$	•	First measu
$K^0\pi^+\pi^0$	$45.9 \pm 2.6 \pm 3.0 \pm 8.6$		and $K^+_0(14)$
		•	First uncert
$K^{*0}(892)\pi^+$	$14.6 \pm 2.4 \pm 1.3 \pm 0.5$		systematic,
$K^{*+}(892)\pi^{0}$	$9.2 \pm 1.3 \pm 0.6 \pm 0.5$	•	Sensitivity 1
$K_0^{*0}(1430)\pi^+$	$50.0 \pm 4.8 \pm 6.0 \pm 4.0$		strongly on
$K_0^{*+}(1430)\pi^0$	$17.2 \pm 2.4 \pm 1.5 \pm 1.8$		of mis-reco
$ ho^+(770)K^0$	$9.4 \pm 1.6 \pm 1.0 \pm 2.6$	•	Smaller und

- First measurement of inclusive $K^0\pi^+\pi^0$ and $K^{*+}_0(1430)\pi^0$ BFs
- First uncertainty is statistical, second systematic, and third due to the signal model
- Sensitivity to relative phases depends strongly on overlap in DP and effects of mis-reconstruction in the corners
- Smaller uncertainties for pairs of parallel resonances

Reference amplitude	Resonances	Relative phases (°) $K^{*0}(892)\pi^+ K^{*+}(892)\pi^0 (K\pi)_0^{*0}\pi^+ (K\pi)_0^{*+}\pi^0 \rho^+(770)K_s^0$				
	$B^+ \to K^{*0}(892)\pi^+$	0	-96 ± 44	174 ± 11	-91 ± 43	-122 ± 38
	$B^+ \to K^{*+}(892)\pi^0$	_	0	-90 ± 42	6 ± 10	-27 ± 26
	$B^+ \to (K\pi)_0^{*0} \pi^+$	_	_	0	95 ± 42	64 ± 37
	$B^+ \rightarrow (K\pi)_0^{*+} \pi^0$	_	_	_	0	-32 ± 25
	$B^+ \rightarrow ho^+(770) K_S^0$	_	_	_	_	0

$B^+ \rightarrow K_{\rm S} \pi^+ \pi^0$ BFs and Phases

	-	Relative phases ($^{\circ}$)				
Reference amplitude	Resonances	$K^{*0}(892)\pi^+$	$K^{*+}(892)\pi^0$	$(K\pi)^{*0}_0\pi^+$	$(K\pi)^{*+}_0\pi^0$	$ ho^+(770)K^0_{\scriptscriptstyle S}$
	$B^+ \to K^{*0}(892)\pi^+$	0	-96 ± 44	174 ± 11	-91 ± 43	-122 ± 38
	$B^+ \to K^{*+}(892)\pi^0$	_	0	-90 ± 42	6 ± 10	-27 ± 26
	$B^+ \to (K\pi)_0^{*0} \pi^+$	_	_	0	95 ± 42	64 ± 37
	$B^+ \rightarrow (K\pi)_0^{*+} \pi^0$	_	_	_	0	-32 ± 25
	$B^+ \rightarrow ho^+(770)K_S^0$	_	_	_	_	0

Effect on *K*^(*)π puzzle

- Plot uses world average values for $K\pi$ and $K^{*+}\pi^{-}$ asymmetries and personal average of the two BaBar results for $K^{*+}\pi^{0}$
- Gives $\Delta A_{CP}(K^*\pi) \equiv A_{CP}(K^{*+}\pi^0) A_{CP}(K^{*+}\pi^-) = -0.16 \pm 0.14$
 - Consistent with zero
- Uncertainty much improved but still too large to be conclusive

$B^+ \rightarrow K_{\rm S} \pi^+ \pi^0$ Phase convention

LASS parameterisation

- Parametrising the $J^P = 0^+$ component of the $K\pi$ spectrum with LASS parametrisation
- Integrating separately for the different contributions in the parametrisation gives:
 - 88% resonance $K^{*0/+}_{0}(1430)$
 - 49% effective range nonresonant component (describes slowly increasing phase as a function of $K\pi$ mass)
 - extra 37% from destructive interference
- Effective range part of the amplitude has a cut-off at 1800 MeV/c²

$$R_{j}^{\text{LASS}} = \frac{m}{q \cot \delta_{B} - iq} + e^{2i\delta_{B}} \frac{m_{0}\Gamma_{0}\frac{m_{0}}{q_{0}}}{(m_{0}^{2} - m^{2}) - im_{0}\Gamma_{0}\frac{qm_{0}}{mq_{0}}}$$

$B_{\rm c}$ meson lifetime

- Uses 2fb⁻¹ of data from 2012 (8 TeV)
- Using decay modes: $B_c^+ \rightarrow J/\psi \ \mu^+ \ v_\mu X$

- 10^{5} Candidates per 0.2 ps $B_c^+ \rightarrow J/\psi \mu^+ \nu_\mu X$ LHCb Combinatorial bkg. 10^{4} Misid. bkg. Prompt peak 10^{3} Fake J/y bkg. Wrong PV bkg. Total 10^{2} - Data 10 2 5 0 3 4 6 t_{ps} [ps]
- Lifetime measured to be:

 $\tau(B_c) = 509 \pm 8 \pm 12$ fs

Mass of the *B_c* meson

- Properties of B_c meson are still rather poorly determined
- Lifetime is rather shorter than other *B* mesons
 - Indicates importance of charm quark in the weak decay
 - See also recent LHCb observation of $B_c \rightarrow B_s \pi$ [Phys. Rev. Lett. 111 (2013) 181801]
- Recent observation of B_c decays to $J/\psi D_s$ provide a way to reduce the systematic uncertainty on the mass measurement
- Obtains a yield of 29 signal events

Mass of the B_c meson

- Mass determination makes use of recent improvement in D_s mass measurement (also from LHCb)
- Also helped by low Q-value for the decay
- Dominant systematics from knowledge of momentum scale and detector material
- Mass determined to be:

 $m(B_c) = 6276.28 \pm 1.44 \pm 0.36 \text{ MeV/c}^2$

Uncertainties on momentum scale and D_s mass largely cancel in the mass difference:

 $m(B_c) - m(D_s) = 4307.97 \pm 1.44 \pm 0.20 \text{ MeV/c}^2$