PANIC 2014 | Hamburg

New Concepts for Energy Frontier Colliders: Plasma Wakefield Acceleration

Jens Osterhoff **FLASH**Forward | Research Group for Plasma Wakefield Accelerators FLA-PWA **Deutsches Elektronen-Synchrotron DESY**, Hamburg, Germany

Plasma wakefield acceleration in a nutshell

- plasma wakefield acceleration (PWFA) Beam
- laser wakefield acceleration (LWFA) Laser \rightarrow

Plasma wakefield acceleration in a nutshell

High-intensity laser pulse

- plasma wakefield acceleration (PWFA) Beam
- laser wakefield acceleration (LWFA) Laser \rightarrow

Plasma wakefield acceleration in a nutshell

h

$$\approx (96 \text{ V/m}) \sqrt{n_e [\text{cm}^{-3}]}$$

(for n_e $\approx 10^{18} \text{ cm}^{-3}$)
 $(33 \text{ km}) \sqrt{n_e^{-1} [\text{cm}^{-3}]}$
n_e $\approx 10^{18} \text{ cm}^{-3}$)

GeV energy gain over cm

 \rightarrow W.P. Leemans *et al.*, Nature Physics 2, 696 (2006)

Bunch length in the µm range

 \rightarrow O. Lundh *et al.*, Nature Physics 7, 219 (2011)

We are still in the inflation phase after the big bang of plasma accelerator science

We are still in the inflation phase after the big bang of plasma accelerator science

ICUIL 2010 World Map of Ultrahigh Intensity Laser Facilities

Community objective is to make plasma technology applicable

NOW

within a decade or two...

miniaturization entails a reduction in construction cost, proliferation of accelerators

General considerations for a plasma-based particle collider

> Overall average acceleration gradient must be significantly higher than for conventional machines

- gradient of > 1 GV/m on average implies < 1 km/TeV

> Beams must feature sufficient luminosity and energy determined by physics

Luminosity requires beam power

> Technology must allow for sufficient efficiency $P_{wall} =$

Coupling efficiency and energy spread require improvement beyond state-of-the-art

Quasi-linear wakefields allow for positron acceleration

Quasi-linear wakefields allow for positron acceleration

Quasi-linear wakefields allow for positron acceleration

 \rightarrow needs to be experimentally confirmed, no active research?

Coupling of plasma stages: preservation of beam emittance

$$\epsilon = \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2}$$

10

Coupling of plasma stages: beam matching required

- > Significant phase mixing occurs up to ~TeV energies within acceleration length (with plasma density 10^{17} cm⁻³, quasi-linear wake, $\lambda = 800$ nm)
- Matching sections between stages require significant space with conventional technology

T. Mehrling et al., Phys. Rev. STAB 15, 111303 (2012)

plasma optics to maintain average gradient?

confer C.B. Schroeder et al., Phys. Rev. STAB 13, 101301 (2010)

confer B. Shadwick et al., Phys. Plasmas 16, 056704 (2009)

- \rightarrow 6 J energy gain per module
- \rightarrow 40 J laser energy per module at ~17 kHz repetition rate
- → 680 kW average laser power required

confer C.B. Schroeder et al., Phys. Rev. STAB 13, 101301 (2010)

confer B. Shadwick et al., Phys. Plasmas 16, 056704 (2009)

Modern 1 PW lasers: « 1% wallplug efficiency, 100 W average power → Current roadblock for LWFA colliders.

confer C.B. Schroeder et al., Phys. Rev. STAB 13, 101301 (2010)

confer B. Shadwick et al., Phys. Plasmas 16, 056704 (2009)

Modern 1 PW lasers: « 1% wallplug efficiency, 100 W average power → Current roadblock for LWFA colliders.

ICAN Project G. Mourou et al., Nature Photonics 7, 258 (2013)

High-peak and high-average power, high-efficiency lasers based on fibers

→ E. Adli *et al.*, SLAC-PUB-15426 (2013)

→ E. Adli *et al.*, SLAC-PUB-15426 (2013)

Technological issues		2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027
Systems	Components & options															
Test facilities	FACET															
	FACET II															
	ILC as Higgs factory @ 250GeV															
	ILC as R&D platform															
Key issues	development of a concept for positron acceleration with high beam brightness															
	High beam loading with both electrons and positrons															
	Beam acceleration with small energy spreads															
	Preservation of small electron beam emittances and															
	mitigation of effects resulting from ion motion															
	Positron beam emittances preservation and mitigation															
	of effects resulting from plasma electron collapse															
	Average bunch repetition rates in the 10's of kHz															
	Synchronization of multiple plasma stages															
	Optical beam matching between plasma acceleration															
	stages and from plasma to beam delivery systems.						-									
Integrated systems with Physics applications	Beam generation with extremely small emittances															
	(Trojan horse technique)															
	Compact X-FEL using the plasma as a high-gradient															
	accelerator and a source of high-brightness beams															
	ILC energy upgrade															

→ E. Adli *et al.*, SLAC-PUB-15426 (2013)

Challenges / required R&D

> Positron acceleration

extensive research program at FACET, SLAC, just started

➤ Coupling of two plasma stages
 beam extraction and injection
 → beam quality preservation

extensive research program at FLASHForward, DESY, to start in 2016

Single acceleration module deliver beam quality efficient energy transfer

High efficiency energy transfer of up to 30% measured

by M. Litos, talk at AAC 2014

Acceleration results from FACET, SLAC

Witness bunch

- **>** 70 pC
- accelerated by 1.7 GeV with gradient of 5 GV/m in plasma
- energy transfer from wake to beam of up to 30%

State-of-the-art

- Energy up to ~85 GeV
 → I.Blumenfeld *et al.*, Nature 445, 741 (2007)
- Transverse normalized emittance not well characterized
- Energy spread ~1% level
- Charge ~100 pC

optimizable by witness beam shaping

FLASHForward

Future-oriented wakefield-accelerator research and development at FLASH

Summary and conclusion

- > Plasma-based acceleration has made enormous progress during the last decade
- > Two basic collider concepts, one beam-driven, one laser-driven, have been put forward
- > Concepts are intriguing, considerable challenges have to be overcome to make them work
- > Required basic R&D includes
 - > Beam-quality improvement, reduction in energy spread
 - > Staging and beam-quality preservation, maintain high average gradient
 - Positron capturing and acceleration
 - Increase of coupling efficiency of driver-to-beam
 - > LWFA: efficient, high-average, high-peak power laser technology
- > Photon science applications will be pursued first as litmus test for plasma-accelerator technology