

Tests of the Standard Model at low energies: (g-2)_μ and Dark Photons

Achim Denig

Institute for Nuclear Physics Johannes Gutenberg University Mainz

Anomalous Magnetic Moment of the Muon (g-2)_µ

3

Magnetic Moment: $\vec{\mu} = \mu_B g \vec{S}$ $a_{\mu}^{SM} = (g-2)_{\mu} / 2 = a_{\mu}^{QED} + a_{\mu}^{weak} + a_{\mu}^{had} = (11659182.8 \pm 4.9) \cdot 10^{-10}$ Teubner et al '11 JN 09 (e⁺e⁻-based) -299 ± 65 DHMZ 10 (τ-based) -195 ± 54 DHMZ 10 (e^+e^-) -287 ± 49 HLMNT 11 (e^+e^-) -261 ± 49 BNL-E821 (world average) 0 ± 63 -500 -400 -300 -200 -100 -700 -600 0 × 10⁻¹¹ $a_{\mu} - a_{\mu}^{exp}$ BNL/E821 measurement $a_{\mu}^{exp} = (11\,659\,208.9\pm6.3)\cdot10^{-10}$

4

Muon Magnetic Moment: $(g-2)_{\mu}$

$(g-2)_{\mu}$ and BSM Physics

Note: Discrepancy twice as large as a_{μ}^{weak} !

Expect
$$\Delta a_{\mu}^{BSM} = 26 \cdot 10^{-10} \sim a_{\mu}^{weak} \times couplings \times (\frac{m_{W}}{m_{BSM}})^2$$

Note: Discrepancy twice as large as a_{μ}^{weak} !

Expect
$$\Delta a_{\mu}^{BSM} = 26 \cdot 10^{-10} \sim a_{\mu}^{weak} \times couplings \times (\frac{m_{W}}{m_{BSM}})^2$$

Testing a very wide range of BSM models

 $m_{BSM} \sim O(m_W), SUSY$ $\Delta a_{\mu}^{SUSY} \approx +13 \cdot 10^{-10} \operatorname{sgn}(\mu) \left(\frac{100 \text{ GeV}}{m_{SUSY}}\right)^2 \tan \beta$

Increasing tension with LHC data, nontraditional SUSY models viable

Stöckinger et al '13

7

$(g-2)_{\mu}$ and BSM Physics

Note: Discrepancy twice as large as a_{μ}^{weak} !

Expect
$$\Delta a_{\mu}^{BSM} = 26 \cdot 10^{-10} \sim a_{\mu}^{weak} \times couplings \times (\frac{m_{W}}{m_{BSM}})^2$$

Testing a very wide range of BSM models

 $m_{BSM} \sim O(m_W), SUSY$ $\Delta a_{\mu}^{SUSY} \approx +13 \cdot 10^{-10} \operatorname{sgn}(\mu) \left(\frac{100 \text{ GeV}}{m_{SUSY}}\right)^2 \tan \beta$

Increasing tension with LHC data, nontraditional SUSY models viable

Stöckinger et al '13

 $m_{BSM} << O(m_W),$ e.g. Dark Photon coupling << $\alpha_{em}/4\pi$

Direct Measurement of $(g-2)_{\mu}$

1:

ΕΝΤ

10

Direct Measurement of $(g-2)_{\mu}$

Achim Denig

BNL \rightarrow FNAL, A new $(g-2)_{\mu}$ Experiment

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\beta \times E}{c} \right]$$

BNL/FNAL Approach

J-PARC Approach

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$$

BNL/FNAL Approach

J-PARC Approach

Achim Denig

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$$

BNL/FNAL Approach

 $\gamma_{\text{magic}} = 29.3$ $p_{\text{magic}} = 3.09 \text{ GeV/}c$

Achim Denig

J-PARC Approach

Low-energy tests of the Standard Model

Achim Denig

Low-energy tests of the Standard Model

16

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$$

BNL/FNAL Approach

- concept at FNAL as BNL/CERN
- higher muon statistics
- less pion contamination
- better control of systematics

J-PARC Approach

- table top experiment
- ultra-cold muons
- injection in 3T MRT magnet
- even larger muon statistics

Factor 4 improved accuracy

VI(b)

VI(h)

VI(c)

VI(i)

VI(a)

VI(g)

VI(f)

EW contributions: A trimph of perturbative QFT and computing **α**μSM **a**^{weak} + **a**u^{had} (11 659 182.8 ± 4.9) · 10⁻¹⁰ = Czarnecki et al. (15.4 ± 0.2) · 10⁻¹⁰ Kinoshita et al. '12 (11 658 471.808 ± **0.015**) · 10⁻¹⁰ ഹഹ Q O l(b) I(d) I(a) I(c)10th Ó 12672 diagrams I(f)l(g)I(h) II(b) II(c) II(d) ll(e) II(f) III(a) III(b) III(c) Ø

VI(d)

VI(j)

VI(e) VI

VI(k)

Hadronic contribution **non-perturbative**, the **limiting** contribution

Hadronic contribution **non-perturbative**, the **limiting** contribution

Rev. Mod. Phys. 83, 1545-1588 (2011)

Initial State Radiation (ISR) aka Radiative Return

- Pioneered by KLOE '05
- Needs **no** systematic variation of beam energy (particle factories!)
- High statistics thanks to high integrated luminosities

→ Entire E range $< E_{CM}$ accessible

Systematic Uncertainties

- BABAR 0.5%
- KLOE 0.8%
- CMD2 0.8%*
- SND 1.5%*

* limited in addition by statistics

- KLOE and BABAR dominate the world average
- Relatively large systematic differences, esp. above ρ peak
- Knowledge of a_{μ}^{had} dramatically limited due to this difference

Future Hadronic Cross Section Measurem.

Future Hadronic Cross Section Measurem.

25

Hadronic Light-by-Light Scattering

Crystal Ball: TL FF $\eta \to e^+ e^- \gamma$

S. Prakhov, M. Unverzagt et al. (A2 collab.) '14

VMD pole model: Λ^{-2} =(1.95 ± 0.15_{stat} ± 0.10_{syst}) GeV⁻²

Low-energy tests of the Standard Model

(g-2)_µ Experiment: Reduction of error by factor 4 !

The Dark Photon

31

New massive force carrier of extra U(1)_d gauge group; predicted in almost all string compactifications

Search for the O(GeV/c²) mass scale in a world-wide effort

- Could explain large number of astrophysical anomalies Arkani-Hamed et al. (2009) Andreas, Ringwald (2010); Andreas, Niebuhr, Ringwald (2012)
- Could explain presently seen deviation of >3σ between (g-2)_μ Standard Model prediction and direct (g-2)_μ measurement Pospelov(2008)

The $(g-2)_{\mu}$ *Parameter Range*

Holdom 86

A portal to relate the dark sector to the SM world (coupling ~ ϵ^2)

Features à la Arkani-Hamed: A theory of Dark Matter

- More than one Dark Matter particle ightarrow Dark Sector
- dm + dm \rightarrow e+e- explains positron excess
- Astrophysical anomalies (PAMELA, FERMI, DAMA/LIBRA, INTEGRAL, ...) suggest dark photon mass on GeV mass scala (and lighter than 2M_p)

Low-energy, high-intensity accelerators (MAMI, JLAB) are ideally suited for Dark Photon searches!

Bjorken, Essig, Schuster, Toro (2009) $e^ \gamma'$ $e^$ e^+ Target Detector z

Searches using Fixed-Target Experiments

JGU

Low-energy, high-intensity accelerators (MAMI, JLAB) are ideally suited for Dark Photon searches!

BABAR Dark Photon Search (arXiv:1406.2980)

BABAR Dark Photon Search (arXiv:1406.2980)

BABAR Dark Photon Search (arXiv:1406.2980)

Conclusions

The Frontiers of Particle Physics

Achim Denig

*EW Mixing Angle sin*² Θ_W at Low Energies ^{JG|U}

$$\sin^2 \Theta_{\mathbf{W}} = (\mathbf{e}/\mathbf{g})^2 = 1 - (\mathbf{M}_{\mathbf{W}}/\mathbf{M}_{\mathbf{Z}})^2$$

A quantity which incorporates $SU(2)_L xU(1)_Y + Higgs$ Mechanism+ Renormalizability

Scattering of longitudinally polarized electrons on protons / electrons

→ Z boson exchange introduces parity-violating effect
 → Measure parity-violating Left-Right cross section asymmetry A_{LR}

$$\begin{array}{lll} A_{LR} & = & \displaystyle \frac{\sigma(e\uparrow) - \sigma(e\downarrow)}{\sigma(e\uparrow) + \sigma(e\downarrow)} = - \displaystyle \frac{G_F Q^2}{4\sqrt{2}\pi\alpha} (Q_W - F(Q^2)) \\ & & \uparrow \\ Q_W & = & \displaystyle 1 - 4\sin^2\theta_W(\mu) \end{array}$$

Scattering of longitudinally polarized electrons on protons / electrons

→ Z boson exchange introduces parity-violating effect
 → Measure parity-violating Left-Right cross section asymmetry A_{LR}

$$A_{LR} = \frac{\sigma(e\uparrow) - \sigma(e\downarrow)}{\sigma(e\uparrow) + \sigma(e\downarrow)} = -\frac{G_F Q^2}{4\sqrt{2}\pi\alpha} (Q_W - F(Q^2))$$

$$Q_W = 1 - 4\sin^2\theta_W(\mu)$$
hadron structure

3 projects at JLAB (1.2 GeV, 11 GeV) and MESA/Mainz (0.1 GeV):

- QWEAK@JLAB (6 GeV), data taking finished
- P2@MESA (0.1 GeV), in preparation
- Moeller@JLAB (11 GeV), in preparation

Thank you!

Additional slides

Energy Scan < 2 GeV at Novosibirsk

VEPP-2000 (since 2010):

- Classical energy scan technique, no ISR
- Upgrade of detectors CMD-3, SND,
- $L_{max} = 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$ at 2 GeV, 20% reached
- \rightarrow concept of round beams
- ightarrow already now competitive in statistics

Absolute $\mu + \mu - \gamma$ cross section measured with 0.5% accuracy!

Low-energy tests of the Standard Model

MESA contribution to $sin^2\theta_W$

Scattering of long. polarized electrons (150 MeV) on protons

- → Z boson exchange introduces parity-violating effect
- → Measure Parity-violating Left-Right cross section asymmetry A_{LR} of 20 x 10⁻⁹

<u>MESA</u>: $\Delta \sin^2 \theta_{W} = 4 \times 10^{-4}$

Future improvement of a_{μ}^{had} ?

1st priority: Clarify situation regarding $\pi + \pi -$ (KLOE vs. BABAR puzzle)

2nd priority: Measure 3π , 4π channels

3rd **priority:** KK and higher multiplicities

Dark Photon Search in a world-wide Effort

Achim Denig

Outline

Anomalous Magnetic Moment of the Muon $(g-2)_{\mu}$

- (g-2)_µ Overview
- Experiment: Towards a New Measurement of (g-2)_µ
- SM Prediction: Hadronic Vacuum Polarization Hadronic Light-by-Light Contribution

Dark Photons

- Overview
- Recent Searches for the Dark Photon

Measurement of $\mu^+\mu^-\gamma$: *Data vs. QED* **ESII**

Meson Transition Form Factors $P \rightarrow \gamma^* \gamma^{(*)}$

Time-like transition form factors:

- Dalitz decays
 - $0 < q^2 < M_p^2$
- Annihilation process
 - $q^2 = s > M_p^2$

Space–like transition form factors:

 Two-photon production of mesons in e+e-

Existing Data on SL Transition Form Factors

Impact of KLOE-II Future

Installation of dedicated tagging detectors close to beam pipe

LET (Low Energy tagger)

- inside KLOE (1 m from IP)
- energy range = 160-400 MeV

HET (High Energy tagger)

- after 1st dipole (11 m from IP)
- energy range = 420-495 MeV

58

Weighting functions dominate at low Q < 2 GeV !

courtesy: V. Pauk, JGU

60 Overview Novosibirsk Results

• CMD-2: $\pi^+\pi^- < 1\%$, higher multiplicities few % accuracy

• SND measurement of $\pi^+\pi^-$ with 1.2% accuracy

Achim Denig

Low-energy tests of the Standard Model

BABAR Summary of ISR Results

Impact on $g_{\mu} - 2$: had. VP

 $a_{\mu}^{
m VP,LO} = (692.3 \pm 4.2) \cdot 10^{-10}$

 $K_s^0 K_L^0$ BABAR not evaluated, yet

 K^+K^-

BABAR reduces $\delta a_{\mu}^{had}(K^+K^-)$ by factor pprox 3

 $\pi^+\pi^-\pi^0\pi^0$ wait for BABAR, BESIII and CMD3 results

 $\pi^+\pi^-\pi^+\pi^-$

BABAR reduces $\delta a_{\mu}^{had}(\pi^{+}\pi^{-}\pi^{+}\pi^{-})$ by 40%

 $\pi^+\pi^-\& \pi^+\pi^-\pi^0$ wait for BESIII and CMD3 results

61

• Large g-2 \rightarrow Large CLFV

G. Isidori, F. Mescia, P. Paradisi, and D. Temes, PRD 75 (2007) 115019 Flavour physics with large tap R with a Ripo-like LSP

Lepton EDMs: d_{μ} vs. a_{μ}

• One more reason to push for best possible muon EDM measurement: µEDM could in principle fake muon AMM `The g-2 anomaly isn't' (Feng et al

Current status of EDMs

Complementarity to LHC: a_{μ} central for BSM analyses

- a_{μ} sharply distinguishes BSM models here SUSY
- helps measure parameters