GERDA: Phase I results & upgrade for Phase II

Anne Wegmann

- on behalf of the GERDA collaboration -

Max-Planck-Institut für Kernphysik - Heidelberg

PANIC, August 25 2014, Hamburg

The GERDA collaboration

Double beta decays

- half lifes in the range of $10^{18} 10^{24} yr$ with $T_{1/2}^{2\nu} (^{76}Ge) = (1.84^{+0.14}_{-0.08}) 10^{21} yr$ J. Phys. G: Nucl. Part. Phys. 40 (2013) 035110
- $\Delta L = 0$: lepton number conserved
- allowed by the standard model

 $0
uetaeta\colon (A,Z) o (A,Z+2)+2e^-$

- only if v has Majorana mass component
- still hunted process

- note: one claim by subgroup of HdM with $T_{1/2}^{0\nu} = (1.19^{+0.37}_{-0.23}) \, 10^{25} \, \mathrm{yr}$ Phys. Rev. Lett. B 586, 198-212 (2004)
- $\Delta L = 2$: lepton number violation
- not allowed by standard model

experimental signatures

 measure the electrons sum energy spectrum

electror

- continuum $\rightarrow 2\nu\beta\beta$
- monoenergetic peak @ $Q_{\beta\beta} \rightarrow 0\nu\beta\beta$

Anne Wegmann (MPIK)

Double beta decays

 $2\nu\beta\beta$: $(A, Z) \rightarrow (A, Z+2) + 2e^- + 2\nu_e$

- half lifes in the range of $10^{18} 10^{24} yr$ with $T_{1/2}^{2\nu} (^{76}Ge) = (1.84^{+0.14}_{-0.08}) 10^{21} yr$ J. Phys. G: Nucl. Part. Phys. 40 (2013) 035110
- $\Delta L = 0$: lepton number conserved
- allowed by the standard model

 $0
uetaeta\colon (A,Z)
ightarrow (A,Z+2)+2e^-$

- only if ν has Majorana mass component
- still hunted process

- note: one claim by subgroup of HdM with $T_{1/2}^{0\nu} = (1.19^{+0.37}_{-0.23}) \, 10^{25} \, \mathrm{yr}$ Phys. Rev. Lett. B 586, 198-212 (2004)
- $\Delta L = 2$: lepton number violation
- not allowed by standard model

why to search in 76 Ge?

- high purity Ge detectors (enriched in ^{76}Ge to $\approx 87\%$) \rightarrow low intrinsic *BI*
- detectors well established technology
- FWHM @ $Q_{\beta\beta} \approx 0.2\%$

calorimeter detectors:

- source=detector
- high detection efficiency
- peak at Q-value
 (Q_{ββ})

Anne Wegmann (MPIK)

The GERDA experiment

electror

PANIC, August 25 2014 3

3 / 14

The GERDA experiment

Anne Wegmann (MPIK)

Phase I data

phase	mass	aspired BI	livetime	$T_{1/2}^{0 u}$ sensitivity
	[kg]	$[cts/(keV \cdot kg \cdot yr]$	[yr]	
	15	10^{-2}	1	$2.4\cdot10^{25}$

8 x semi-coaxial detectors

- reprocessed detectors formerly used by HdM & IGEX experiments
- enrichment fraction of ^{76}Ge : pprox 86%
- data taking: November 2011 May 2013
- 2 detectors not considered (high leakage current)
- total mass used for analysis: 14.6 kg

$5 \times Broad$ Energy Germanium (BEGe) detectors

- from \approx 30 newly processed Phase II detectors
- enrichment fraction of ^{76}Ge : pprox 88%
- data taking (first test): July 2012 May 2013
- 1 detector not considered (unstable behaviour)
- total mass used for analysis: 3.0 kg

Phase I results

data at ${\it Q}_{etaeta}\pm 5\,{
m keV}$ was blinded

before unblinding

- energy calibration
- data selection
- analysis method
- background model
- pulse shape discrimination (PSD) cuts

Phase I results

result

- total exposure: $M \cdot t = 21.6 \text{ kg yr}$
- no peak in spectrum @ $Q_{\beta\beta}$

•
$$N_{obs} = 7 (w/o) \leftrightarrow 3 (w/ PSD)$$

•
$$N_{exp} = 5.1 \text{ (w/o)} \leftrightarrow 2.5 \text{ (w/PSD)}$$

 event count N_{obs} consistent with expected background N_{exp}

result on $T_{1/2}^{0\nu}$

frequentist profile likelihood fit

- best fit $N^{0\nu} = 0$
- $T_{1/2}^{0\nu}(90\% C.L.) > 2.1 \cdot 10^{25} yr$
- median sensitivity: $2.4 \cdot 10^{25} yr$

Bayes: $T_{1/2}^{0\nu}(90\% C.L.) > 1.9 \cdot 10^{25} yr$

Phase II goal

phase	mass	aspired BI	livetime	$T_{1/2}^{0\nu}$ sensitivity
	[kg]	$[cts/(keV \cdot kg \cdot yr]$	[yr]	[yr]
I	15	10^{-2}	1	$2.4 \cdot 10^{25}$
- 11	35	10^{-3}	3	$1.4\cdot10^{26}$

Upgrade

More and better enr Ge-diodes

Anne Wegmann (MPIK)

PSD for BEGe's

mono-parametric A/E cut

- A =amplitude of current pulse
- **E** = energy
- high capability of distinguishing SSE from MSE and surface p⁺/n⁺ events
- well tested and understood method

Phase I

- tuned using ²⁰⁸TI DEP (per definition A/E = 1) \rightarrow keep 0.965 < A/E < 1.07
- $0\nu\beta\beta$ acceptance = $(92 \pm 2)\%$ (determined from ²⁰⁸TI DEP and MC); background acceptance @ $Q_{\beta\beta} \le 20\%$

Anne Wegmann (MPIK)

The GERDA experiment

PANIC, August 25 2014 10 / 14

LAr scintillation veto for background suppression How does an active LAr veto work?

LAr scintillation

- energy deposition in LAr creates scintillation light @ λ = 128 nm, 40000 pe/MeV
- can be used as anticoincidence veto

LAr instrumentation

- detect scintillation light with photomultipliers and scintillating fibers coupled to SiPMs
- shift the XUV scintillation light into the visible range

Proof of LAr-veto concept in low background environment

energy spectrum for an internal Th228 source:

"Hybrid" LAr veto design

- MC simulations (including photon propagation) of important backgrounds conducted
 - suppression factors: ${}^{214}Bi \approx 10$, ${}^{208}Tl > 100$
 - validated with data of existing low background facility

scintillating fibers and SiPMs

- build the middle shroud
- type: BCF-91A coated with TPB
- light readout at both ends by SiPMs on top

"Hybrid" LAr veto design

- MC simulations (including photon propagation) of important backgrounds conducted
 - suppression factors: ${}^{214}Bi \approx 10$, ${}^{208}Tl > 100$
 - validated with data of existing low background facility

top/bottom copper shroud + reflective foil

- Tetratex coated with TPB as wavelength shifter
- installed on inner side of copper shrouds

nylon mini-shrouds

- around each detector string
- transparent & WLS
- ⇒ usable together with light instrumentation

Anne Wegmann (MPIK)

Current status - LAr veto integration

 PMTs and scintillating fibers are tested in dedicated teststands

Iongterm tests of PMTs successful

final production of fiber modules started

Mechanical test of the hybrid design in GERDA

top PMT plate:

top PMT plate & middle fiber shroud:

bottom Cu shroud with bottom PMT plate:

whole setup immersed in GERDA cryostat:

Anne Wegmann (MPIK)

The GERDA experiment

PANIC, August 25 2014 13 / 14

Conclusion

GERDA Phase I design goals reached:

- background index after PSD: 0.01 cts/(keV kg yr)
- exposure: 21.6 kg yr

No $0\nu\beta\beta$ signal observed at $Q_{\beta\beta} = 2039 \,\mathrm{keV}$

- best fit: $N_{0\nu} = 0$
- limit on half-life: $T_{1/2}^{0\nu} > 2.1 \cdot 10^{25} \, {\rm yr}$ (90% C.L.)

Transition to Phase II ongoing:

- increase of target mass: pprox 40 kg of Ge detectors
- new custom made BEGe detectors with enhanced pulse shape discrimination
- liquid argon instrumentation
- \Rightarrow background $\lesssim 10^{-3} \, ({\rm cts}/({\rm keV\,kg\,yr})$
- $\Rightarrow~{\rm explore}~{\cal T}_{1/2}^{0\nu}$ values in the range of $10^{26}\,{\rm yr}$

Bonus slides

Calibration, time stability and energy resolution

Blinded physics spectrum

Main background components:

- β -spectrum of ³⁹Ar (with Q = 565 keV)
- 2νββ-spectrum of ⁷⁶Ge
- γ-lines from ⁴⁰K, ⁴²K, ⁶⁰Co, ²¹⁴Bi, ²¹²Bi, ²⁰⁸TI & ²²⁸Ac
- α-spectrum of ²³⁸U chain (in semi-coaxial detectors)

Division in 3 data sets:

- semi-coaxial data splitted in two sets ("golden", "silver") according to BI
- "BEGe" set kept seperated due to different resolution and background

	Exposure	FWHM @
data set	[kg∙yr]	Q_{etaeta} [keV]
golden	17.9	4.8 ± 0.2
silver	1.3	4.8 ± 0.2
BEGe	2.4	3.2 ± 0.2

Anne Wegmann (MPIK)

PANIC, August 25 2014 17 / 14

Background model Eur. Phys. J. C74 (2014) 2764

General procedure:

- simulation of known (from material screening) and observed (from detector operation) background sources
- spectral fit with combination of all components in the energy region between 570 keV and 7500 keV on the 3 data sets
- 2 extremes: "minimum" (all known + visible contributions) & "maximum" (additional contributions from other possible locations)

Results:

- no γ-line expected in the blinded window around Q_{ββ}
- flat background between 1930 keV and 2190 keV (= ROI) excluding known peaks @ 2103 keV (²⁰⁸TI) as well as 2119 keV (²¹⁴Bi)
- $BI = (1.76 2.38) \cdot 10^{-2} \frac{\text{cts}}{\text{kg·keV·yr}}$ (depending on assumption of source location)

Background model Eur. Phys. J. C74 (2014) 2764

General procedure:

- simulation of known (from material screening) and observed (from detector operation) background sources
- spectral fit with combination of all components in the energy region between 570 keV and 7500 keV on the 3 data sets
- 2 extremes: "minimum" (all known + visible contributions) & "maximum" (additional contributions from other possible locations)

Results:

- no γ-line expected in the blinded window around Q_{ββ}
- flat background between 1930 keV and 2190 keV (= ROI) excluding known peaks @ 2103 keV (²⁰⁸TI) as well as 2119 keV (²¹⁴Bi)
- $BI = (1.76 2.38) \cdot 10^{-2} \frac{\text{cts}}{\text{kg·keV·yr}}$ (depending on assumption of source location)

Partial unblinding @ Q_{etaeta} \pm 20 keV \rightarrow \pm 5 keV with 8.6 - 10.3 expected and 13 observed events

Pulse shape discrimination (PSD) Eur. Phys. J. C73 (2013) 2583

semi-coaxial: artificial neural network (ANN)

- TMVA / TMIpANN with 2 hidden layers of $n_{\rm var}$ and $n_{\rm var}+1$ nodes
- Input: time when charge pulse reaches 1%, 3%,...,90% of maximum (n_{var}=50)
- training using ²²⁸Th calibration data
 → SSE: ²⁰⁸Tl DEP @ 1620.7 keV
 → MSE: ²¹²Bi FEP @ 1592.5 keV
- cut defined such that the acceptance of ²⁰⁸TI DEP is fixed to 90%
- $0\nu\beta\beta$ acceptance = $90^{+5}_{-9}\%$; background acceptance @ $Q_{\beta\beta} \sim 55\%$

BEGe: mono-parametric A/E

- A = amplitude of current pulse
- E = energy
- high capability of distinguising SSE from MSE and surface p^+/n^+ events
- tuned using ²⁰⁸TI DEP (per definition A/E=1) \rightarrow keep 0.965 < A/E < 1.07
- well tested and understood method
- $0\nu\beta\beta$ acceptance = $(92 \pm 2)\%$ (determined from ²⁰⁸TI DEP and MC); background acceptance @ $Q_{\beta\beta} \leq 20\%$

PANIC, August 25 2014 19 / 14

LArGe - a test facility for GERDA

Proof of LAr-veto concept in low background environment

	source	position	suppression factor			
			LAr veto	PSD	total	
	²²⁸ Th	int	1180 ± 250	2.4 ± 0.1	5200 ± 1300	-
		ext	25 ± 1.2	2.8 ± 0.1	129 ± 15	
	²²⁶ Ra	int	4.6 ± 0.2	4.1 ± 0.2	45 ± 5	
		ext	3.2 ± 0.2	4.4 ± 0.4	18 ± 3	
	⁶⁰ Co	int	27 ± 1.7	76 ± 8.7	3900 ± 1300	
2	GERDA	experiment		PANIC, August	25 2014 20	/ 14

The GERDA experiment

Physics validation of Monte Carlo using photon tracking Comparison to LArGe data

data with various sources in different

locations available

LArGe data

 1180 ± 250

 4.6 ± 0.2

 27 ± 2

 25 ± 1.2

 3.2 ± 0.2

internal

external

bg

208 TI

²¹⁴ Bi

⁶⁰ Co

208 TI

²¹⁴ Bi

- tuning of optical properties
 - material reflectivities (Ge, Cu, VM2000, ...)
 - > absorption and emission spectra
 - LAr attenuation length, light yield and triplet lifetime
- good MC description after tuning
- $\Rightarrow\,$ can be used to design the LAr veto for ${\rm GERDA}$

MC.

 909 ± 235

 3.8 ± 0.1

 16.1 ± 1.3

 17.2 ± 1.6

 3.2 ± 0.4

"Hybrid" LAr veto design Instrumentation induced BI $[{\rm cts}/({\rm keV\,kg\,yr})]$

background source		activity	BI w/o LAr veto	BI with LAr veto *
PMTs + VD	²²⁸ Th ²²⁶ Ra	$<2.44\mathrm{mBq/PMT} \\<2.84\mathrm{mBq/PMT}$	$< 3.1(1) * 10^{-4} < 5.5(2) * 10^{-5}$	$< 3.1(5) * 10^{-6} < 2.7(5) * 10^{-6}$
cable	²²⁸ Th ²²⁶ Ra	$<$ 14.4 $\mu \mathrm{Bq/m}$ $<$ 11.2 $\mu \mathrm{Bq/m}$	$< 2.4(1) * 10^{-4} < 3.9(1) * 10^{-5}$	$< 7.0(2) * 10^{-6}$ $< 5.5(2) * 10^{-6}$
top & bottom shroud (Tetratex & copper)	²²⁸ Th ²²⁶ Ra	$< 103\mu{\rm Bq/m^2} \\ < 282\mu{\rm Bq/m^2}$	$< 2.7(1) * 10^{-5} < 1.2(1) * 10^{-5}$	$< 9.9(5) * 10^{-7} < 1.5(1) * 10^{-6}$
sum	²²⁸ Th ²²⁶ Ra total		$< 5.8(1) * 10^{-4}$ $< 1.1(1) * 10^{-4}$ $< 6.8(1) * 10^{-4}$	$< 1.1(1) * 10^{-5}$ $< 9.8(6) * 10^{-6}$ $< 2.1(1) * 10^{-5}$

Photomultiplier - Hardware

screening	results ²²⁸ Th	[mBq/pc] ²²⁶ <i>Ra</i>
PMT *	< 1.94	< 1.7
VD	< 0.5	< 1.14

* calculated from component screening peak-to-valley: 4:1

teststand

test of up to 10 PMTs in LAr

- light yield measurements with internal sources
- gain calibration with LED
- signal rate monitoring
- longterm test up to 6 weeks performed

Photomultiplier - Hardware

some of the PMTs exhibited light production when operated in LAr $% \left({{{\rm{D}}_{\rm{A}}}} \right)$

likely cause: discharges of electron surface charges on ceramic stem

iterative process in close cooperation with Hamamatsu to solve flashing of PMTs

several countermeasures investigated:

- reduce supply voltage between pins
- enlarge distance between pins
- put metal or quartz plate on ceramic stem
- ⇒ significant improvement of PMT stability in later modifications

DM2014 on February 28, 2014, Yuji Hotta, Hamamatsu

Anne Wegmann (MPIK)

Fibers - Hardware TUM cryostat

Fibers - Hardware

scintillating fibers coated with TPB

• screening results 228 Th: 0.058 Bq/kg

 $^{226}\textit{Ra}:~0.042\,\mathrm{Bq/kg}$

9 fibers per SiPM

- readout at the top
- ⇒ far from detectors

SiPMs at LN temperature

- good QE, negligible dark rate
- Ketek SiPMs in 'die' \rightarrow low background packaging

