ALICE results on vector meson photoproduction in ultraperipheral p-Pb and Pb-Pb collisions

Evgeny Kryshen (CERN) on behalf of the ALICE collaboration

> PANIC 2014, Hamburg August 28, 2014

LHC as a γ Pb and γ p collider

Ultra-peripheral (UPC) collisions: b > R₁+R₂

 \rightarrow hadronic interactions strongly suppressed

High photon flux

 \rightarrow well described in Weizsäcker-Williams

approximation (quasi-real photons)

- \rightarrow flux proportional to Z²
- \rightarrow high cross section for γ -induced reactions

Pb-Pb and p-Pb UPC at LHC can be used to study γ -Pb, γ p and $\gamma\gamma$ interactions at higher center-of-mass energies than ever before

Recent review on UPC physics: Phys. Rept. 458 (2008) 1-171

J/ψ photoproduction in UPC

 LO pQCD: coherent J/ψ photoproduction cross section is proportional to the square of the gluon density in the target:

$$\frac{d\sigma_{\gamma A \to J/\psi A}}{dt}\Big|_{t=0} = \frac{M_{J/\psi}^3 \Gamma_{ee} \pi^3 \alpha_s^2(Q^2)}{48\alpha_{\rm em} Q^8} \Big[xg_A(x,Q^2)\Big]^2$$

- Mass of J/ ψ serves as a hard scale: $Q^2 \sim \frac{M_{J/\psi}^2}{4} \sim 2.5 \text{ GeV}^2$
- Bjorken $x \sim 10^{-2} 10^{-5}$ accessible at LHC: x =

$$=\frac{M_{J/\psi}^2}{W_{\gamma p}^2}$$

 J/ψ photoproduction in Pb-Pb UPC (lead target) provides information on gluon shadowing in nuclei at low x which is essentially unconstrained by existing data

$$R_g^A(x,Q^2) = \frac{g_A(x,Q^2)}{Ag_p(x,Q^2)} \ - \text{gluon shadowing factor}$$

J/ ψ and ψ (2S) in ultraperipheral Pb-Pb collisions

Looking for two tracks in an otherwise empty detector...

J/ψ at forward rapidity

UPC forward trigger:

- single **muon trigger** with $p_T > 1$ GeV/c (-4 < η < -2.5)
- hit in **VZERO-C** (-3.7 < η < -1.7)
- no hits in **VZERO-A** (2.8 < η < 5.1)

Pb-Pb integrated luminosity ~ 55 μb⁻¹

Offline event selection:

- Beam gas rejection with VZERO
- Hadronic rejection with ZDC and SPD
 Track selection:
- muon tracks: -3.7 < η < -2.5
- matching with the trigger
- radial position for muons at the end of absorber: 17.5 < R_{abs}< 89.5 cm
- p_{T} dependent DCA cut
- opposite sign dimuon: -3.6 < *y* < -2.6

Phys. Lett. B718 (2013) 1273

J/ψ at forward rapidity

J/ψ at central rapidity

UPC central barrel trigger:

- $\begin{array}{ll} \bullet & 2 \leq \text{TOF hits} \leq 6 \; (|\eta| < 0.9) \\ & + \; \text{back-to-back topology} \; (150^\circ \leq \phi_{\text{TOF}} \leq 180^\circ) \end{array} \end{array}$
- ≥ 2 hits in SPD ($|\eta| < 1.5$)
- no hits in **VZERO** (C: -3.7 < η < -1.7, A: 2.8 < η < 5.1)

Pb-Pb integrated luminosity ~ 23 $\mu b^{\text{-1}}$

Eur. Phys. J. C73 (2013) 2617

J/ψ at central rapidity

- Measured both in dielectron and dimuon channels
- Clear coherent peak from J/ ψ and continuum $\gamma\gamma \rightarrow l^+l^-$
- Also contributions from:

- incoherent J/ ψ

- J/ ψ from ψ ' feed down
- hadronic contribution at high p_{τ}

Eur. Phys. J. C73 (2013) 2617

Coherent J/ ψ : comparison to models

Good agreement with models which include nuclear gluon shadowing. Best agreement with EPS09 shadowing (shadowing factor ~0.6 at x ~ 10⁻³, Q² = 2.4 GeV²)

Phys. Lett. B718 (2013) 1273 Eur. Phys. J. C73 (2013) 2617

- **STARLIGHT: Klein, Nystrand, PRC60 (1999) 014903** VDM + Glauber approach where J/ ψ +p cross section is obtained from a parameterization of HERA data
- GM: Gonçalves, Machado, PRC84 (2011) 011902 color dipole model, dipole nucleon cross section taken from the IIM saturation model
- AB: Adeluyi and Bertulani, PRC85 (2012) 044904 LO pQCD calculations: AB-MSTW08 assumes no nuclear effects for the gluon distribution, other AB models incorporate gluon shadowing effects according to the EPS08, EPS09 or HKN07 parameterizations
- CSS: Cisek, Szczurek, Schäfer, PRC86 (2012) 014905 Glauber approach accounting ccg intermediate states
- RSZ: Rebyakova, Strikman, Zhalov, PLB 710 (2012) 252 LO pQCD calculations with nuclear gluon shadowing computed in the leading twist approximation
- **Lappi, Mäntysaari, PRC87 (2013) 032201**: color dipole model + saturation

Nuclear gluon shadowing from ALICE data

V. Guzei, E. Kryshen, M. Strikman, M. Zhalov. Phys. Lett. B726 (2013) 290

Nuclear suppression factor in J/ψ photoproduction:

ALICE data corrected for photon flux

$$S(W_{\gamma p}) \equiv \left[\frac{\sigma_{\gamma Pb \to J/\psi Pb}^{\exp}(W_{\gamma p})}{\sigma_{\gamma Pb \to J/\psi Pb}^{IA}(W_{\gamma p})}\right]^{1/2} \implies R(x, \mu^2 = 2.4 \text{ GeV}^2)$$

Impulse Approximation: J/ψ photoproduction cross section from HERA corrected for the integral over squared Pb form-factor

- **Hijing:** scale-independent gluon shadowing, characterized by parameter *s*_{*a*}
- Shadowing parametrizations (EPS,nDS,HKN07) use DIS and Drell-Yan data + π^0 data from RHIC (EPS) – gluon shadowing essentially unconstrained at low x
- Leading twist approximation: propagation of color dipoles in nuclei via intermediate diffractive states (Gribov-Glauber shadowing theory). Incorporates diffractive parton distributions in proton (from HERA)

Coherent ψ(2S) in Pb-Pb

- Measured decay channels:
 - $\psi(2S) \rightarrow l^+ l^-$
 - $\psi(2S) \rightarrow J/\psi \pi^+\pi^-$
- Moderate number of candidates, but very clean signal

Coherent $\psi(2S)$ in Pb-Pb: model comparison

ALL-PREL-68346

ALI-PREL-68037

- Disfavour models with no nuclear effects and models with strong gluon shadowing
- Caveat: large uncertainty on the yp **reference** used for theory predictions
- Experimental systematic uncertainties (and theoretical uncertainties) largely cancel in the $\sigma(\psi(2S))/\sigma(J/\psi)$ ratio
- Do nuclear effects affect differently the 1S and 2S states?

0.3

0.4

0.5

J/ψ in ultraperipheral p-Pb collisions

J/ψ photoproduction off proton

 J/ψ photoproduction off proton allows one to probe poorly known gluon distribution in the proton at low x and search for saturation effects

- HERA: J/ ψ photoproduction in ep (x down to 10⁻⁴)
 - Consistent with power law (no hint for saturation)
 - Data was used to extract gluon PDFs (MNRT, JMRT)
- CDF: exclusive J/ ψ in $p\bar{p}$ @ 2 TeV \blacktriangleright compatible with HERA (W~100 GeV, $x~10^{-3}$)
- LHCb: exclusive J/ ψ in pp @ 7 TeV
 - forward rapidity $(x \sim 10^{-2} + x \sim 10^{-5})$
 - photon emitter unknown -assumed power law to • separate low and high-energy contributions

 $\frac{d\sigma_{\gamma p \to pJ/\psi}}{dt}\Big|_{t=0}$

p-Pb UPC with ALICE

Data collected in 2013:

p-Pb: p towards muon spectrometerPb-p: Pb towards muon spectrometer

Advantage of p-Pb collisions wrt pp:

- Large photon flux from Pb
- Photon source is known
 → no assumption required to separate low
 and high energy contributions
- Hadronic contribution can be strongly suppressed by ensuring Pb nuclei are intact (no signal in ZDC)
- Contamination from central exclusive χ_c production negligible

both muons in the muon arm

both leptons in the barrel

one muon in the muon arm, second in the barrel

Results in forward p-Pb and Pb-p collisions

• Using p_T -templates to extract contribution of exclusive J/ ψ

Tests of power law dependence

- Results compatible with predictions based on fits to HERA data
- Power law exponent from ALICE data alone: δ =0.67 \pm 0.06
- Exponent compatible with HERA:
 - H1: δ =0.67 ± 0.03
 - ZEUS: δ =0.69 ± 0.02 ± 0.03
- LHCb solutions consistent with the power-law fit obtained from ALICE results

ρ^0 photoproduction in ultraperipheral Pb-Pb collisions

ρ⁰ photoproduction in Pb-Pb

GDL: Frankfurt, Strikman, Zhalov [Phys. Lett. B 537 (2002) 51; Phys. Rev. C 67(2003) 034901]

- Vector Meson Dominance Model in the Gribov-Glauber approach.
- σ_{oN} from Donnachie-Landshoff model.

GM: Gonçalves, Machado [Phys. Rev. C 84 (2011) 011902]

- Based on the color dipole model in combination with saturation from a CGC-IIM model. **STARLIGHT: Klein, Nystrand** [Phys. Rev. C 60 (1999) 014903, http://starlight.hepforge.org/]
- Glauber model neglecting the elastic part of total cross section.
- Uses experimental data on $\sigma_{\rho N}$ cross section.

Prospects for Run2

Harvest in Run1, Pb-Pb collisions @ 2.76 TeV:

Meson	Integrated lumi	Yield	Comment
ρ	0.26 ub ⁻¹	~ 10 ⁴	stat << syst
J/ψ central J/ψ forward	23 ub ⁻¹ 55 ub ⁻¹	~500 ~100	stat < syst
Ψ(2S) central	23 ub ⁻¹	~ 50	stat >> syst

Expected integrated luminosity in Run2: ~1 nb⁻¹ Pb-Pb @ 5.1 TeV

New forward detector:

- Two scintillators (two layers each, in coincidence):
 - ADA: 5.5 < η < 7.5
 ADC: -7.5 < η < -5.5
- Can be used to make the veto to non UPC event stronger

Summary and outlook

- **Coherent J/** ψ photoproduction cross section in Pb-Pb in agreement with moderate nuclear gluon shadowing (EPS09, LTA)
- Coherent ψ(2S) cross section disfavours models with no nuclear effects and models with strong gluon shadowing. Looking forward to Run2: expected ψ(2S) statistics similar to J/ψ in Run1.
- J/ψ photoproduction in p-Pb: no significant change in the gluon density behaviour between HERA and LHC energies
- **ρ⁰ photoproduction** consistent with STARLIGHT
- **Preparing for Run2 @ LHC**: increase in luminosity and center of mass energy of the photon-target system. Stay tuned!