

Perspectives for the Phase II upgrade of CMS

D. A. Petyt STFC Rutherford Appleton Laboratory for the CMS Collaboration

20th Particles and Nuclei International Conference Hamburg, Germany 25-29 August 2014

Outline

- CMS physics goals for HL-LHC
- Detector challenges for HL-LHC
 - longevity and performance
- The CMS Phase II upgrade programme
 - replacement of detector components
 - enhanced trigger functionality
- Timeline and summary

The LHC/HL-LHC programme

LHC operation up to LS3 (2023)

- 25ns bunch spacing, √s close to 14 TeV; instantaneous luminosities up to 2x10³⁴ (2x design); accumulate ~300fb⁻¹ by 2023
- HL-LHC operation beyond LS3 (2025+)
 - new low-β triplets and crab-cavities to optimize the bunch overlap at the interaction region
 - level the instantaneous luminosity at 5×10^{34} from a potential peak value of 2×10^{35} ; deliver ~250 fb⁻¹ per year for a further 10 years of operation.

HL-LHC physics goals

Study properties of newly-discovered Higgs boson

- Precision measurement of couplings, including Higgs self-coupling
- Searches for new physics

 $H \rightarrow \gamma \gamma$

- SUSY and multi-TeV particle searches
- Improved precision of top and electroweak measurements
 - reduce the systematic uncertainty on Higgs boson measurements
 - potential probes of subtle new physics effects.

Detector challenges

- Ability to survive up to 3000 fb⁻¹, and to 2035
- Ability to operate at 140 PU
- Ability to offer similar performance at 140 PU, 3000 fb⁻¹ as current detector in Run I
- Maintain current trigger acceptance for HL-LHC conditions
 - Need to maintain lowest possible trigger and analysis thresholds

CMS Phase I detector

Designed to operate for 10 years, L~10³⁴, ∫Ldt=500fb⁻¹.

Scope of the CMS Upgrades

- New tracker/pixel detectors and forward calorimeters with:
 - enhanced radiation tolerance, granularity
 - extended eta coverage for tracking (and calorimetry) up to $|\eta|=4$
- Enhanced Level-1 trigger functionality
 - Hardware track trigger at level-1; matching of tracks and calo/muon objects → maintain low thresholds at HL-LHC luminosities
 - Larger on-detector latency required (12.5µs) for hardware track finding
 - Implies consequent replacement of FE electronics in various sub-detectors. New FE readout allows for finer granularity L1 trigger input.
 - Higher L1 trigger and HLT accept rates (5-10x phase 1 rate)
 - New endcap muon stations to improve muon trigger acceptance

Tracker - longevity

- Tracker and pixel detectors will experience significant ageing effects in Phase II
 - PIXEL: radiation damage affects charge collection efficiency and Lorentz Angle: worse hit resolution (factor of 2) after 500 fb⁻¹; bandwidth limitations: 7% data loss in 1st pixel layer at 140 PU
 - **OUTER TRACKER:** increasing number of non-operational modules (leakage current), significantly degraded tracking performance (efficiency,fake rates)

→ both must be replaced during LS3

Science & Technology

Facilities Council

Tracker upgrade - requirements

- Longevity and radiation tolerance
 - to 3000fb⁻¹, radiation tolerance up to 2e¹⁶ n_{eq}/cm² in pixel region
 - preserve capability to replace pixel detector during machine shutdown periods
- Increased granularity and two-track separation
 - to maintain performance in high pileup environment
 - smaller pixels, occupancy O(1%) at 140 PU
- Reduced material budget and high eta extension
 - improve low p_T tracker performance and calorimeter resolution
 - coverage to lηl=4 (PU mitigation in jets)
- Participation in trigger upgrade
 - Satisfy latency and rate requirements of L1 trigger upgrade (12.5µs, ~500kHz)
 - Outer tracker to provide track seeds for L1 trigger decision

Tracker upgrade - design

Outer Tracker, with PS and 2S modules

Pixel detector, with eta extension

Outer Tracker significantly lighter than Phase 1 detector

Pixel detector

- R&D ongoing for suitable silicon sensor technology:
 - thinner silicon with smaller pixels
 - n-in-p design studies ongoing
 - 3D sensors being investigated for inner regions

Readout:

- target pixel size: 50x50µm² or
 25x100µm² (factor of 6 smaller than current pixel)
- 65nm CMOS technology multiple readout chips bump-bonded to single pixel sensor
- Common development with ATLAS
 - RD53 collaboration
 - full-scale prototype planned

irradiation results on charge collection efficiency

Outer Tracker

PS and 2S modules

regional coincidence of hits in two closely-spaced sensors to reduce fakes from low momentum (p_T <2 GeV) tracks

Module design

- Two variants: "two-strip" modules (R>60cm) and "pixel-strip" (R<60cm) modules
- 2S and PS modules provide "track stubs" for use in L1 track trigger @ 40 MHz

Science & Technology

Facilities Council

 "p_T modules" reject low momentum fake tracks → reduce data volume by x10

2S module + FE hybrid design

90 μ m x 5 cm strips, no z readout

PS module + FE hybrid design

1st sensor: 100 μm x 2.5 cm strips 2nd sensor: 100 μm x 1.5 mm macro-pixels (z readout)

Outer Tracker

- Extensive R&D programme ongoing to find suitable silicon sensor technology:
 - FZ or MCz material, 200µm active thickness, n-in-p favoured
- Evaporative CO₂ Cooling
 - need to dissipate ~100 kW, joint development with ATLAS. Based on development of Phase I Pixel
- Readout:

Facilities Council

- auxiliary electronics (power, optical links) integrated on module. Prototyping mechanical designs
- track finding being explored using fast FPGAs (with associative memories)

irradiation results on charge collection efficiency

Calorimeters - longevity

- ECAL and HCAL endcaps (IηI>1.48) will suffer significant radiation damage after 500fb⁻¹ and will need to be replaced during LS3
 - ECAL: loss of light transmission in PbWO₄ crystals caused by hadron irradiation. Cumulative, no recovery at room temperature.
 - HCAL: loss of signal response from plastic scintillator tiles + WLS fibre

Science & Technology Facilities Council

versus integrated luminosity and η

Predicted HCAL Endcap signal response after 1000fb⁻¹ versus active layer and η

Calorimeters - Phase II upgrade programme

ECAL Barrel:

more details in Marco Peruzzi's talk

- Small light transmission losses (<50%) after 3000fb⁻¹ → Barrel will not be replaced for HL-LHC
- APD dark current increase mitigated by APD cooling (18→8°C)
- FE electronics must be replaced in LS3 to satisfy trigger requirements (rate, latency)
- ECAL Preshower:
- Current electronics inconsistent with L1 rate/latency requirements → Preshower will be removed prior to HL-LHC operation
- ECAL Endcaps:
- Large light transmission losses → Endcaps will be replaced during LS3
- Radiation tolerant replacement designs with finer granularity to be less sensitive to pileup fluctuations
- HCAL Endcaps:
- Replacement of brass absorber and active scintillator material during LS3
 - new HCAL endcaps to be constructed on the surface together with the replacement ECAL endcaps

ter upgrade options

Shashlik option

- Replacement EM calorimeter using radiation tolerant crystal places (LYSO/CeF₃) interleaved with tungsten absorber
- Scintillation ight propagated to photodetector by embedded fibre/wavelength shifter
- Compact Shashtik 'towers' with small Moliere radius to minimise PU fluctuations.
 - Tower dimensions: 1.4 x 1.4 x 114mm³ (LYSO/W)
- Test beam prototypes being evaluated
- R&D on radiation to shifter and radiation hard photodetectors in progress

Science & Technology Facilities Council

HGCAL option

- Combined ECAL/HCAL using silicon-based sampling calorimeter, with W or Brass absorber
 - High-granularity ECAL (E-HGC): Si/W (25X₀)
 - High-granularity HCAL (H-HGC): Si/Brass (3.5λ)
 - Backing HCAL: brass/scintillator (5.5λ)
 - High granularity silicon sensors: 0.45-0.9cm²

Technical challenges being addressed

radiation tolerance of sensors; sensor mechanical design and readout; low temperature operation required (-30°C, evaporative CO₂ cooling)

Calorimeter upgrade - HCAL options

- Investigating technologies for replacement HE active medium
 - Low radiation region (dose <1 Mrad, ~30%)
 - existing scintillator design ("sigma tiles") can be used
 - Medium radiation region (dose 1-5 Mrad, ~30%)
 - same materials can be used, but with increased granularity ("finger tiles") to minimise light path length
 - High radiation region (dose >5 Mrad, ~40%)
 - R&D on more radiation tolerant materials ongoing. See examples at right:
 - a) Liquid scintillator,
 - b) Ce-doped LuAg fibres;
 - c) Quartz plates with rad-hard WLS coating;
 - d) Plastic scintillator with longer λ WLS fibre

Science & Technology Facilities Council

HCAL R&D prototypes

Muon systems

Current system includes Drift Tubes (DT), Cathode Strip Chambers (CSC), Resistive Plate Chambers (RPC)

- provide precise muon track measurement for triggering (lηl<2.4) and offline reco
- Upgrades for Phase II:
- replacement of DT electronics (longevity)
- replacement of FE cards for inner-ring CSC chambers (MEn/1) rate/latency
- Installation of rate-tolerant forward muon chambers to enhance muon trigger performance and redundancy for 1.6<lηl<2.4
 - GEMs (GEn/1) with high precision measurement layers
 - RPCs (REn/1) with possible fast timing response redundancy/PU mitigation
- Increased pseudorapidity coverage: lnl~3 (ME0 -GEM candidate detector technology)

Trigger - upgrade

- Major trigger upgrade required during LS3
 - Goal is to maintain current physics acceptance for HL-LHC conditions
 - L1 rate ~1500 kHz during Phase 2 (140 PU) if Run II algorithms are used beyond feasible limits for upgrade
 - Implement track-trigger at L1 to maintain acceptance at lower rates (~500kHz).
 Requires latency of up to 12.5µs to perform hardware track reconstruction.
 - Replacement of ECAL Barrel front-ends, DT readout boards, CSC front-end boards needed to satisfy these rate and latency requirements
 - The trigger improvements from these upgrades include:
 - 25x better ECAL trigger primitive granularity at L1, better matching to tracks
 - better muon efficiency and redundancy, also with track trigger
 - Preliminary performance estimates with track trigger:
 - ~10x reduction in single electron and muon rates (p_T~20 GeV) with comparable signal efficiency to Run II algorithms

DAQ/Online/Offline

- CMS DAQ capacity will be upgraded to handle increased event size and L1 rate for HL-LHC conditions
 - bandwidth and CPU power increases by a factor of 10-15 (15-30) for 140(200) PU
- HLT output rate will increase from 0.5-1 kHz to 5-7.5 kHz
 - to maintain same factor of 100 reduction factor from L1 to HLT
 - optimising algorithms for multi-threaded processing
- Offline computing processing and storage needs will increase substantially for Phase II
 - new techniques and technologies will need to be developed to meet these demands

Upgrade timeline

- Installation to be carried out in LS3 (2022-5)
- Developing a schedule consistent with a 30 Mo shutdown

- R&D milestones being defined for the various detector upgrade projects
 - will permit the choice of forward calorimeter technology within ~1 year
- Technical proposal to be released this year, TDRs in 2016-7

Summary

- Full exploitation of the physics potential of the LHC →HL-LHC physics programme
 - Significant challenges to experiments in terms of harsh radiation environment, detector longevity and high pileup
- <u>A major program of upgrades is planned to allow CMS to</u> <u>maintain the current high level of performance during HL-LHC</u> <u>operation</u>
- Upgrade plan to be detailed in CMS Phase II Technical Proposal
 - In preparation due at the end of this year
- Technical Design Reports to follow in 2016-2017

Backup slides

Tracker upgrade: estimated performance

Tracking efficiency

Fake rate

p_T resolution

- Efficiency/fake rate performance maintained at 140 PU
 - performance extended up to $|\eta|=4$
- p_T resolution improved due to reduced material budget

Calorimeters - performance degradation

Predicted ECAL Endcap resolution (standalone simulation) at η=2.2, after 500 fb⁻¹

Predicted ECAL Endcap resolution (standalone simulation) at η =2.2, after 3000 fb⁻¹

- Effects of ECAL crystal transparency degradation:
 - Light transmission loss affects noise and stochastic terms
 - Light collection non-uniformity affects constant term

Muon upgrade performance

Improved muon trigger efficiency and redundancy

Reduced muon trigger rate for a given threshold with addition of GE1/1 chamber

