Search for Higgs Bosons Beyond the Standard Model with the CMS Detector 20th Particles & Nuclei International Conference Hamburg, Germany

Matthias Schröder (DESY) on behalf of the CMS Collaboration

August 26, 2014

Did We Discover the Standard-Model Higgs?

- General indications of physics beyond the Standard Model
 - Dark matter
 - Fine-tuning problem
- Observed boson compatible with Standard-Model Higgs
- But from couplings analysis¹: plenty of room for BSM Higgs decays!

What are the properties of the new boson? Are there any additional Higgs bosons?

¹presented on Monday by Shivali Malhotra

Examples of Models with Extended Higgs Sector

Supersymmetry

- Well-motivated extension of Standard Model
 - ✓ Provides dark-matter candidates
 - \checkmark Solves fine-tuning problem
- Minimal supersymmetric extension (MSSM)
 - 2 Higgs doublets \rightarrow 5 physical bosons

h, H, A $\equiv \Phi$ (neutral) H⁺, H⁻ (charged)

- ▶ 2 tree-level parameters m_A and tan β
- h usually identified with 125 GeV boson
- Next-to-Minimal model (NMSSM)
 - 2 doublets + 1 singlet = 7 physical bosons

Generic 2 Higgs-Doublet Models (2HDM)

- Effective extension of Standard Model
- Allows flavour-changing Yukawa couplings

MSSM predicts $m_{
m h} \lesssim 135~{
m GeV!}$

Examples of BSM-Higgs Searches at CMS

additional Higgs bosons

non-SM decays

MSSM

 $h \rightarrow 2a_1 \rightarrow 4\mu$ $a_1 \rightarrow 2\mu$ $\Phi \rightarrow \tau \tau$ $H^{\pm} \rightarrow cs$ $H^{\pm} \rightarrow \tau v$ $\Phi \rightarrow bb$ $\Phi \rightarrow uu$ H(125)-pair production high-mass H $\rightarrow \chi \chi$

invisible decays

anomalous HVV couplings

lepton-flavour violating decays

Examples of BSM-Higgs Searches at CMS

additional Higgs bosons

non-SM decays

MSSM

$$h \rightarrow 2a_{1} \rightarrow 4\mu$$

$$a_{1} \rightarrow 2\mu$$

$$\Phi \rightarrow \tau\tau$$

$$\Phi \rightarrow bb$$

$$H^{\pm} \rightarrow \tau\nu$$

$$H^{\pm} \rightarrow \tau\nu$$

invisible decays

anomalous HVV couplings

lepton-flavour violating decays

H(125)-pair production

Search for a Heavy Neutral Higgs: $\Phi \rightarrow \tau \tau$

- Relatively large BR
- Manageable backgrounds

Dominant at larger tan β

Analysis Strategy

Event selection

- 2 oppositely charged, isolated leptons
 - dedicated τ_h reconstruction
- + channel-dependent selections
 - ▶ e.g. m_T(µ,∉_T) < 30 GeV in µτ_h to suppress W + jets background

5 of 6 $\tau\tau$ decay-channels (= 97%) covered

Search for peak in di-au invariant mass distribution

Di- τ Invariant Mass Reconstruction

Enhanced separation of signal and dominant $\mathsf{Z} \to \tau \tau$ background

Background Prediction

Background composition varies across channels

Results: Di- τ Invariant Mass Distributions

All distributions well described by background-only hypothesis

Interpretation of $\Phi \rightarrow \tau \tau$ -Search Results

Limits in MSSM parameter space up to $m_{\rm A}=1~{\rm TeV}$ Excluding tan $\beta\gtrsim 5$ at low $m_{\rm A}$

Interpretation of $\Phi \rightarrow \tau \tau$ -Search Results

Latest results take 125 GeV boson explicitly into account

Interpretation of $\Phi \rightarrow \tau \tau$ -Search Results

Interpretation in new benchmark scenarios

Search for a Heavy Neutral Higgs: $\Phi \rightarrow bb$

precise understanding of b-jet tag efficiency and mis-tag rate

Best sensitivity in this channel to date

Search for a Light Charged Higgs: $H^+ \rightarrow c\bar{s}$

- In MSSM
 - $H^+ \rightarrow c\bar{s}$ dominant decay mode for tan $\beta < 1$
 - Production via t-quark decay for $m_{\rm H^+} < m_t$

Search for peak in invariant mass M_{ij} of non-b-tagged jets

H⁺ Reconstruction

- Primary background from tt events in semi-leptonic channel
 - Peaks at $M_{jj} = m_W$

• *M*_{jj} reconstruction using constrained kinematic fit

- \bullet Improved mass resolution of H^+ candidate
 - Good separation from SM tt decays

H⁺ Signal Extraction

- Assuming Standard-Model tt-production cross-section
- In case of signal
 - Excess at m_{H⁺}
 - Deficit at m_W

No significant deviation from SM-only hypothesis observed

$$N_{\mathsf{data}} = \left[\mathcal{B}(\mathsf{t} o \mathsf{Wb}) + \mathcal{B}(\mathsf{t} o \mathsf{H}^+\mathsf{b})
ight] \cdot \sigma_{\mathsf{t}\overline{\mathsf{t}}}$$

H⁺ Signal Extraction

- Assuming Standard-Model tt-production cross-section
- In case of signal
 - Excess at m_{H⁺}
 - Deficit at m_W

No significant deviation from SM-only hypothesis observed

H⁺ Signal Extraction

- Assuming Standard-Model tt-production cross-section
- In case of signal
 - Excess at m_{H⁺}
 - Deficit at m_W

No significant deviation from SM-only hypothesis observed

Interpretation of $H^+ \rightarrow c\bar{s}$ -Search Results

Model-independent upper limit of ${\cal B}(t \to H^+ b)$ of 2–7% for 90 $< m_{H^+} < 160 \text{ GeV}$

Lepton-Flavour Violating Higgs-Decays

- Possible e.g. in 2HDMs
- This search:

 $H(125) \rightarrow \mu \tau$ in $\mu \tau_e$ and $\mu \tau_h$ channels

- \blacktriangleright Oppositely charged isolated μ and e
- Oppositely charged isolated µ and τ_h candidate

Search for $\mu\tau$ -mass resonance

- Additional $\Delta \phi(\mathbf{e}, \not\!\!\!E_{\mathsf{T}})$ and μ - p_{T} selection
- Exclusive 0,1,2-jets categories to enhance different production modes

Invariant $\mu\tau$ -Mass Reconstruction

- Collinear-mass approximation
 - Assumption: τ decay products (visible and νs) collinear

- Background composition varies across channels, e.g.
- $Z \rightarrow \tau \tau$ background
 - \blacktriangleright With embedding technique in ${\rm Z} \rightarrow \mu \mu$ events

10.7 fb⁻¹ fc = 8 TeV

Results of ${\rm H} \rightarrow \mu \tau$ Search

Observation compatible with SM expectation in all channels

Interpretation of the H $\rightarrow \mu \tau \text{-} \text{Search}$ Results

Upper limit of $\mathcal{B}(H \to \mu \tau)$: 1.57% obs. vs 0.75% exp. Best fit: $\mathcal{B} = 0.89^{+0.40}_{-0.37} \% \to \text{mild}$ excess of 2.5 σ

Interpretation of the H $\rightarrow \mu \tau \text{-} \text{Search}$ Results

Upper limits of flavour-violating $\mu\tau$ -Yukawa couplings Best limits to-date, significant improvement on previous measurements

Summary

- After the Higgs boson discovery
 - Does it have the Standard-Model Higgs properties?
 - Are there any further Higgs bosons?
- Many new results targeting these questions, e.g.
 - Neutral heavy Higgs bosons $\Phi \rightarrow \tau \tau$
 - Charged light Higgs bosons $H^+ \rightarrow c\bar{s}$
 - Lepton-flavour violating Higgs decays ${
 m H} o \mu au$

Significantly improved constraints on 'BSM-Higgs parameter space' e. g. closing lower m_A -region in MSSM

A new LHC-run at $\sqrt{s} = 13$ TeV Lies Ahead...

- Greatly enhanced sensitivity especially for high-mass signals
- CMS has developed the tools to explore this new territory

Many more exciting results expected

Additional Material

Examples of BSM-Higgs Searches at CMS

MSSM

- $\Phi \rightarrow \tau \tau$, submitted to JHEP (arXiv:1408.3316)
- $\Phi \rightarrow$ bb, Phys. Lett. B 722 (2013) 207
- $\Phi
 ightarrow \mu\mu$, CMS PAS HIG-12-011
- $H^+ \rightarrow c\bar{s}$, CMS PAS HIG-13-035
- $H^+ \rightarrow \tau^+ \nu_{\tau}$, CMS PAS HIG-12-052

• NMSSM

- h ightarrow 2a $_1
 ightarrow$ 4 μ , CMS PAS HIG-13-010
- $a_1 \rightarrow 2\mu$, Phys. Rev. Lett. 109, 121801

Other

- Lepton-flavour violating Higgs-decays, CMS PAS HIG-14-005
- Invisible Higgs-decays, Euro. Phys. J. C 74 (2014) 2980
- Resonant H(125)-pair production, CMS PAS HIG-14-013, HIG-13-032, HIG-13-025
- High-mass $H \rightarrow \gamma \gamma$, CMS PAS HIG-14-006
- Anomalous HVV couplings, CMS PAS HIG-14-012, HIG-14-014
- Higgs properties, CMS PAS HIG-14-009

Neutral MSSM Higgs-Boson Masses in m_h^{max} Scenario

The 125 GeV-Higgs-Observation and the MSSM

• Updated benchmark scenario $m_h^{\text{mod}\pm}$: Smaller stop-mass mixing parameter X_t to account for measured Higgs mass

- 125 GeV-Higgs observation does not exclude a heavy MSSM Higgs-boson in wide range of $\tan\beta$
- Decoupling limit ($m_A >> m_Z$): light CP-even Higgs becomes SM-like

Both SM and MSSM fit current H(125) measurements equally well

$m_{\tau\tau}$ Reconstruction

$\Phi \rightarrow \tau \tau$: Contributions

$H^+ \to c \overline{s} :$ Control Distribution

Upper limit of $\mathcal{B}(H \to \mu \tau)$: 1.57% obs. vs 0.75% exp. Best fit: $\mathcal{B} = 0.89^{+0.40}_{-0.37} \% \to \text{mild}$ excess of 2.5 σ