GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Search for Dark Matter at CMS

Kerstin Hoepfner, RWTH Aachen, III. Phys. Inst. A

On behalf of the CMS collaboration

PANIC Conference 2014, Hamburg, Germany

- Dark matter (DM) is part of cosmological SM, little is known about its properties
- DM (denoted χ) might be produced in pairs in pp collisions at the LHC
- Searches are complementary to (in)direct experiments

Modelling DM production with effective field theories (EFT):

- Collapse SM-DM interaction in effective 4-points operator
- Few parameters: mass \mathbf{m}_{γ} , cut-off scale $\Lambda = \mathbf{M} / \sqrt{g_{\gamma}} \mathbf{g}_{q}$
- Easy to translate to DM-nucleon cross section $\sigma(\chi N \to \chi N) \sim {g_q^2 g_\chi^2 \over M^4} \mu_{\chi N}^2$
- Requires M > collision energy scale
- Probes one interaction at the time
- Different operators depending on mediator's coupling

Name	Type	Operator	Coefficient
D1	scalar (qq)	$ar\chi\chiar q q$	m_q/M_*^3
D5	vector	$ar{\chi}\gamma^\mu\chiar{q}\gamma_\mu q$	$1/M_{*}^{2}$
D8	axial-vector	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$	$1/M_{*}^{2}$
D9	tensor	$\bar{\chi}\sigma^{\mu u}\chi\bar{q}\sigma_{\mu u}q$	$1/M_{*}^{2}$
D11	scalar (gg)	$ar{\chi}\chi G_{\mu u}G^{\mu u}$	$\alpha_s/4M_*^3$
C1	scalar	$\chi^\dagger \chi ar q q$	m_q/M_*^2

According to [J. Goodman et al., Phys. Rev D 82, 116010 (2010)]

ISR of a jet / photon

Recoil of a W-boson $W \rightarrow Iv$ with I=e, μ

Single top s- and t-channel

Production in association with ttbar

arXiv:1408.3583 CMS-PAS-EXO-12-047

CMS-PAS-B2G-12-022

CMS-PAS-B2G-13-004 CMS-PAS-B2G-14-004

K.Hoepfner, RWTH Aachen and CMS | PANIC 2014|

All analyses with full 2012 data-set of 20/fb

Pair Produced Dark Matter in Monojet Channel

Signature: high p_T jet (p_T > 110 GeV) + MET > 250 GeV

arXiv:1408.3583 CMS-PAS-EXO-12-048 20/fb of 2012 pp data at Vs

= 8 TeV

Monojet Event Selection

Event selection:

- MET trigger defines lower analysis boundary MET>250 GeV
- One central jet p_T>110 GeV. Second softer jet if close to first
- Jet quality: >20% carried by charged hadrons,
 <70% carried by neutral hadron or photon
- No isolated lepton (e,mu,tau)

Backgrounds:

- Dominant background (~70%) is Z→vv + j
 → Data driven estimate from Z→µµ + j
- W+jets (~30%) also from data driven
- QCD : rejected by $\Delta \phi$ (j1, j2) cut

95% C.L. limits on $\sigma \times A \times \varepsilon$

Expected # signal events for Λ =850 GeV, M χ =1 GeV

Search for Pair Produced Dark Matter in Monophoton Channel

Highest photon p_T candidate event. Photon p_T = 653 GeV, MET = 716 GeV Signature: high p_T Photon (E_T > 145 GeV) + MET > 140 GeV

CMS-PAS-EXO-12-047 20/fb of 2012 pp data at vs = 8 TeV

K.Hoepfner, RWTH Aachen and CMS | PANIC 2014 | Page 7

Monophoton Event Selection

Event selection:

Photon and photon+MET trigger defines lower analysis boundary

- MET > 140 GeV and $p_T^{\gamma} > 145$ GeV with $\Delta \phi$ (MET, p_T^{γ}) > 2
- Photon ID cuts to reject fakes
- Veto on electron/muon and hadronic activity
- Search performed in 6 bins of p_T^{γ}

Backgrounds:

- Irreducible Z(→vv) + γ background dominant after selection
- Other bkgr with genuine photon: W(\rightarrow Iv) + γ
- Fake photon backgroundss:
 W→ev, QCD, beam halo

DM-Nucleon Cross-section Limits Mono-Photon/Jet CMS-PAS-EXO-12-047

- Data compatible with SM expectation
- 90% C.L. limits set on EFT scale Λ using effective operators in EFT approach
- Translate to elastic DM-nucleon cross-section vs. DM mass $M\chi$

Pair Produced Dark Matter in Monolepton Channel

CMS Experiment at LHC, CERN Data recorded: Tue May 8 08:19:45 2012 CEST Run/Event: 193621 / 1180868279 CMS Lumi section: 1557 Orbit/Crossing: 408140266 / 17 pt = 1106. eta = 0.066 phi = 1.948 pt = 1209.2 eta = 0.000 Events with max M_T in either channel MT = 2312.24 GeV CMS CMS Experiment at LHC, CERN Data recorded: Fri Nov 30 05:20:24 2012 CEST Run/Event: 208307 / 445184756 ta = 0.000IT = 2082.6 Gept = 1113.84

Signature W + MET:high p_T electron (E_T >85 GeV) + METHigh p_T muon (p_T >40 GeV)+ METAll results combine electron + muon channels

arXiv:1408.2745 CMS –PAS-EXO-13-004 20/fb of 2012 pp data at Vs = 8 TeV

Search strategy following arXiv:1208.4861v2

K.Hoepfner, RWTH Aachen and CMS | PANIC 2014 | Page 10

Monolepton is Special

Monolepton channel sensitive to possibly different coupling to u- and d-type quarks

Parametrized by $\boldsymbol{\xi} = -1, 0, +1 \quad \boldsymbol{\xi} = \lambda_u \cdot \lambda_d$ with $|\lambda_i| = 0 \text{ or } 1$ (interference)

K.Hoepfner, RWTH Aachen and CMS | PANIC 2014 | Page 11

Selecting Monolepton Events

Event selection

- Single electron(muon) trigger with p_T>85(40) GeV
- Lepton ID optimized for high p_T
- Kinematical selections: $0.4 < p_T / MET < 2$ $\Delta \phi < 0.8$

Transverse mass distribution

$$M_{\rm T} = \sqrt{2 \cdot p_{\rm T}^{\ell} \cdot E_{\rm T}^{\rm miss} \cdot (1 - \cos \Delta \phi_{\ell,\nu})}$$

Background

- Derived from simulation
- Main bkgr: $W \rightarrow Iv$ with MT binned k-factor
- NLO xsec's

arXiv:1408.2745

Limits on production cross section + λ

arXiv:1408.2745

Test Scalar Coupling with heavy Top Quark(s)

Couplings discussed so far proportional to $1/\Lambda^2$

Scalar couplings (D1) $C = \underbrace{m_q}_{\Lambda^3}$ Quark mass. Best with heavy quarks \rightarrow top (C1) $C = \underbrace{m_q}_{\Lambda^2}$

Single Top

Association with top-pairs

New

Mono-Top Search

Event selection:

- MET > 350 GeV
- 3 jets, of which 1 b-tagged (removes 4/5 of bkgr)
- No isolated electron/muon

Main backgrounds are ttbar (with MET from W leptonic), V+jet QCD, VV and V+jets suppressed by b-tag.

DM excluded vector (M χ <655 GeV) and scalar (M χ <327 GeV) couplings @95% C.L.

Depending on W decay mode, final state

- IIbb+MET (di-lepton)
- ljjjb+MET (semi-leptonic)

Concentrates on scalar operator where other channels are weak

Search strategy following Phys. Rev. D 88.063510

K.Hoepfner, RWTH Aachen and CMS | PANIC 2014 | Page 16

Event Selection

Selection semileptonic channel:

- 1lepton + ≥3 jets + ≥1 b-jet + MET
- Large MET (due to DM) → MET>320 GeV
- Both W reconstructed via M_T

Selection dilepton channel:

- 2 electrons/muons + ≥ 2 jets
- MET > 320 GeV
- Cuts on scalar sum of leptons and jets, and lepton opening angle

Main Background for both analyses is ttbar. Signal efficiencyies ~1-2% for both channels.

Dilepton nearly bkgrfree but low signal. Both are higher in semi-leptonic. Signal efficiency and sensitivity comparable.

6	b for both channels.				E _T (Gev
[Background Source	Yield]	Background Source	Yield
lepton	tī	$0.87 \pm 0.18 \pm 0.27$	27 19 15 10	$t\bar{t}$	$8.2\pm0.6\pm1.9$
	Single top	$0.48 \pm 0.46 \pm 0.09$		W	$5.2 \pm 1.7 \pm 0.6$
	Di-boson	$0.32 \pm 0.09 \pm 0.05$		Single top	$2.3 \pm 1.1 \pm 1.1$
	Drell-Yan	Drell-Yan $0.19 \pm 0.14 \pm 0.03$ One Mis-ID lepton $0.02 \pm 0.07 \pm 0.02$	ot	Di-boson	$0.5 \pm 0.2 \pm 0.2$
	One Mis-ID lepton		<u>e</u>	Drell-Yan	$0.3 \pm 0.3 \pm 0.1$
	Double Mis-ID leptons	$0.00 \pm 0.00 \pm 0.00$		Total Bkg	$164 \pm 22 \pm 27$
5	Total Bkg	$1.89 \pm 0.53 \pm 0.39$			$10.1 \pm 2.2 \pm 2.7$
	Data	1	Se	Data	18
İ	Signal	$1.88 \pm 0.11 \pm 0.07$		Signal	$38.3 \pm 0.7 \pm 2.1$
-		-	-		

200

CMS-PAS-B2G-13-004 (di-lepton) CMS-PAS-B2G-14-004 (semi-leptonic)

Data

Single top

Drell-Yan Di-boson

 $M_{\chi} = 1 \text{ GeV}$ $M_{\chi} = 600 \text{ GeV}$

400

tŦ

W

Semi-leptonic

 \sqrt{s} = 8 TeV, L = 19.7 fb⁻¹

CMS Preliminary

40 Ge√ 10⁵ 010⁴

Events / 10³

10

10⁻¹

300

CMS-PAS-B2G-13-004 (di-lepton) Exclusion Limits ttbar CMS-PAS-B2G-14-004 (semi-leptonic)

Concentrate on scalar interaction, where mono-X does not set limits due to low sensitivity

Summary

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults

Search for pair produced dark matter candidates with CMS

- Results with full 2012 dataset at sqrt(s)=8 TeV
- Channels:
 - jet + MET (vector and axial-vector coupling)
 - lepton + MET (vector and axial-vector)
 - Monophoton + MET (vector and axial-vector)
 - Single top + MET (scalar and vector)
 - Ttbar + MET (scalar coupling)
- No indication of a signal observed
- Exclude production cross section of 10⁻¹...10⁻² pb
- For $M\chi$ < 10 GeV only collider limits
- Exclude χ -nucleon cross sections from 10⁻³⁸...10⁻⁴²cm²

Additional Material

Translate limits to same plane as direct detection experiments

CMS Preliminary 2012 20 fb⁻¹ vs = 8 TeV

A (GeV)

450

400

350

300

250F

200

Spin Independent

150 ----- Expected CL limit

Limit in 95 C.L

electron + muon $\xi = +1$

Observed limit

Expected CL ± 2 σ

Convert pp xsec

limit into Λ -limit

 $\Lambda = M_{\chi}/(2\pi)$

Λ=2Ŵ., 10

Expected CL $\pm 1\sigma$

M_y (GeV)

Jet + MET

Vector operator $\frac{1}{\Lambda^2} \bar{\chi} \gamma^{\mu} \chi \bar{\xi}_i \bar{q}_i \gamma_{\mu} q_i$			
Channel	Lambda limit for Mchi < 200 GeV		
l+MET ξ = +1	300 GeV	Ļ	
l+MET ξ = 0	700 GeV	1	
l+MET ξ = -1	1000 GeV	v	

900 GeV

u = reduced mass of the nucleon (p or n) system

with
$$f_u^p = f_d^n = 2$$
, $f_d^p = f_u^n = 1$
 $f = 0$ for other quarks

arXiv:0803.2360.

Atomic nucleus Dark matter particle Recoiling nucleus Nucleo

Spin-Independent

$$\mathcal{O}^{N}_{\bar{}} = f^{N}_{q} \frac{\left(\bar{N}\gamma^{\mu}N\right)\left(\bar{\chi}\gamma_{\mu}\chi\right)}{\Lambda^{2}}$$

Coefficient relating nucleon and quark operator

$$\sigma_{SI} = \frac{\mu^2}{\pi \Lambda^4} \left(\sum_q \left(f_q^N \right)^2 \right)^2$$

(

Translate limits to same plane as direct detection experiments

Axial-Vector operator $\frac{1}{\Lambda^2} \bar{\chi} \gamma^{\mu} \gamma^5 \chi \quad \tilde{\zeta}_i \bar{q}_i \gamma_{\mu} \gamma^5 q_i$

_	CMS Preliminary 2012 20 fb ⁻¹ √s = 8 TeV				
2	450				
Ŭ	400				
<	350				
	300				
	250	Spin Dependent electron + muon $\xi = +1$			
	200	Limit in 95 C.L.			
	150	Observed limit Expected CL limit			
	100	Expected $CL \pm 1\sigma$			
	50	$ = \Lambda = M/(2\pi) $			
	0				
		1 10 $^{10^{2}}$ M_{χ} (GeV)			

Convert pp xsec limit into Λ -limit

Channel	Lambda limit for Mchi < 200 GeV	
I+MET ξ = +1	300 GeV	
I+MET ξ = 0	700 GeV	
I+MET ξ = -1	1000 GeV	
Jet + MET	900 GeV	

 $\mu = \text{reduced mass of the} \\ \text{nucleon (p or n) system} \\ \Delta_u^p = \Delta_d^n = 0.842 \pm 0.012 \\ \Delta_d^p = \Delta_u^n = -0.427 \pm 0.013 \\ \Delta_s^p = \Delta_s^n = -0.085 \pm 0.018 \\ \text{arXiv:} 0803.2360.$

 $\mathcal{D}^{Nq} = \underbrace{\Delta_q^N (N\gamma^\mu \gamma_5 N) (\bar{\chi}\gamma_\mu \gamma_5 \chi)}_{\Lambda^2}$

Sum of quark helicities

 $\sigma_{SI} = \frac{3\mu^2}{r}$

Monojet Signal

DM is undetectable → MET
Jet to balance p in transverse plane
→ high pT object

Provey unit reduced

Monojet Signal and Background

Limits on production cross section + λ

CMS-PAS-EXO-13-004

K.Hoepfner, RWTH Aachen and CMS | PANIC 2014 | Page 25

Monojet Λ as fct of mediator mass

Observed limits on Λ as a function of the mass of the mediator (M), assuming vector interactions and a dark matter mass of 50 GeV (blue) and 500 GeV (red). The width of the mediator was varied between M/3, M/10 and M/8Pi.

Monophoton Other Backgrounds

Instrumental backgrounds (~30%) from misidentification and beam halo

SM backgrounds (~70%):

- Needs good understanding of cross section for Zγ, Wγ.
- NLO corrections. NLO k-factor (1.3 global SF for Wγ, p_T(γ) dependent SF for Zγ (~1.5 global)

		Source	Estimate
		Jet Mimics Photon	11.2 ± 2.8
		Beam Halo	11.1 ± 5.6
		Electron Mimics Photon	3.5 ± 1.5
		$W\gamma$	3.0 ± 1.0
		γ +jet	0.5 ± 0.2
		$\gamma\gamma$	0.6 ± 0.3
		$Z(uar{ u})\gamma$	45.3 ± 6.9
		Total Background	75.1 ± 9.5
		Total Observed Candidates	73

K.Hoepfner, RWTH Aachen and CMS | PANIC 2014