Inclusive SUSY searches at CMS

Lukas Vanelderen

Inclusive Searches

- Searches probing broad range of coloured sparticle production and decay modes
- Usually in fully hadronic channels, sometimes extended with photon and lepton channels

General Strategy

- Study events with large hadronic activity and genuine momentum imbalance
- Most generic discriminators:

$$\begin{split} \mathrm{HT} &= \sum_{\mathrm{jet}} |p_{\mathrm{T}}^{\mathrm{jet}}| \\ \mathrm{probes\ masses\ in\ hard\ interaction} \\ |\mathbf{M\vec{E}T}| &= |-\sum_{\mathrm{part}} \vec{p}_{\mathrm{T}}^{\mathrm{part}}| \\ \mathrm{estimates\ momentum\ imbalance} \\ \Delta\Phi(\mathrm{jet,\ MET}) \\ \mathrm{against\ fake\ imbalance} \end{split}$$

Outline

CMS' 8 TeV Inclusive Searches

 \sim

Their Interpretation

HT + MHT Search

CMS-PAS-SUS-13-012 JHEP 06 (2014) 055, <u>arXiv:1402.4770</u>

Event Selection

- simplest search, in terms of discriminating variables
- ≥ 3 jets, pt > 50 GeV
- HT > 500 GeV
- MHT = $|\sum_{\text{jet}} \vec{p}_{\text{T}}^{\text{jet}}| > 200 \text{ GeV}$
- 3 leading jets: $\Delta \Phi(\text{jet}, \text{MHT}) > 0.5, 0.5, 0.3$
- veto e/mu, pT > 10 GeV

Search Regions and Results

- bin in # of jets:
 [3,5], [6,7], ≥ 8
- bin further in HT and MHT
- a data-driven background estimate is performed
- data shows no significant excess

The M_{T2} Search

CMS-PAS-SUS-13-019 http://cds.cern.ch/record/1646394

The M_{T2} Variable

very sensitive to genuine MET

Search Regions

- veto e/mu/tau, pt > 10/10/20 GeV
- leading 2 jets, pt 100 GeV
- leading 4 jets, $\Delta \Phi(\text{jet}, \text{MET}) > 0.3$
- count (b-)jets with pt > 40 GeV

bin in # jets and b-jets

Search Regions

further binning in HT per bin $M_{\rm T2}$ thresholds against QCD

Results

further binning in M_{T2}

123 search regions provide sensitivity to broad range of BSM processes

data-driven bkg estimates, no global significant excess

The α_T Search

CMS-PAS-SUS-12-028 EPJC 73 (2013) 2568, <u>arXiv:1303.2985</u>

The α_T Variable

Sharp cutoff at 0.5 for events w/o genuine MET

Search Regions & Results

- veto e/mu/ γ , pt > 10/10/25 GeV
- leading 2 jets, pt > 100 GeV
- $\alpha_{\rm T} > 0.55$
- bin in # jets and b-jets
- bin further in HT, HT > 275 GeV

data-driven bkg estimates, no global significant excess

Simplified Model Interpretation

Gluino Pair Production

Squark Pairs

squark mass [GeV]

3rd Generation

gluino mass [GeV]

3rd Generation

gluino mass [GeV]

Phenomenological MSSM (pMSSM) Interpretation

CMS-PAS-SUS-13-020 http://cds.cern.ch/record/1693148

pMSSM: 19 dimensional MSSM model with "minimal" assumptions

7000 points drawn in "3 TeV box" from preCMS prior

i	Observable	Constraint	Likelihood function	MCMC /
	$\mu_j(heta)$	$D_j^{ ext{non-DCS}}$	$L(D_j^{\text{non-DCS}} \mu_j(\theta))$	post-MCMC
1a	$BR(b \rightarrow s\gamma)$	$(3.55 \pm 0.23^{\text{stat}} \pm 0.24^{\text{th}} \pm 0.09^{\text{sys}}) \times 10^{-4}$	Gaussian	MCMC
1b	$BR(b ightarrow s \gamma)$	$(3.43 \pm 0.21^{\text{stat}} \pm 0.24^{\text{th}} \pm 0.07^{\text{sys}}) \times 10^{-4}$	Gaussian	reweight
2a	$BR(B_s \to \mu\mu)$	observed CLs curve from	$d(1 - CLs)/d(BR(B_s \to \mu\mu))$	MCMC
2b	$BR(B_s \to \mu\mu)$	$(2.9 \pm 0.7 \pm 0.29^{th}) \times 10^{-9}$	Gaussian	reweight
3a	$R(B_u \to \tau \nu)$	1.63 ± 0.54	Gaussian	MCMC
3b	$R(B_u \to \tau \nu)$	1.04 ± 0.34	Gaussian	reweight
4	Δa_{μ}	$(26.1 \pm 6.3^{\text{exp}} \pm 4.9^{\text{SM}} \pm 10.0^{\text{SUSY}}) \times 10^{-10}$	Gaussian	MCMC
5a	m_t	$173.3 \pm 0.5^{\text{stat}} \pm 1.3^{\text{sys}} \text{ GeV}$	Gaussian	MCMC
5b	m_t	$173.20 \pm 0.87^{\text{stat}} \pm 1.3^{\text{sys}} \text{ GeV}$	Gaussian	reweight
6	$m_b(m_b)$	$4.19^{+0.18}_{-0.06} \text{ GeV}$	Two-sided Gaussian	MCMC
7	$\alpha_s(M_Z)$	0.1184 ± 0.0007	Gaussian	MCMC
8a	m_h	pre-LHC: $m_h^{low} = 112$	1 if $m_h \ge m_h^{low}$	MCMC
			0 if $m_h < m_h^{low}$	
8b	m_h	LHC: $m_h^{low} = 120, \ m_h^{up} = 130$	1 if $m_h^{low} \le m_h \le m_h^{up}$	reweight
			0 if $m_h < m_h^{low}$ or $m_h > m_h^{up}$	
9	sparticle	LEP	1 if allowed	MCMC
	masses	(via micrOMEGAs)	0 if excluded	

=> very generic SUSY interpretation
=> considers search and precision data

Prior vs Posterior Distributions Bayesian Analysis

HT + MHT data disfavours low mass regions

Survival Rate of pMSSM Points

Conclusion

- CMS has developed a nice set of inclusive SUSY searches
- No significant excesses observed
- Interpretation in SMSs and "full" pMSSM models

=> Probing coloured particles up to 1300 GeV
=> Probing LSPs up to 700 GeV