Constraining Neutrino Electromagnetic Properties by Atomic Ionization ¹

Cheng-Pang Liu

National Dong Hwa University, Taiwan

20th Particle & Nuclei International Conference Hamburg, Germany Aug. 28, 2014

¹PLB 731, 159 (2014); PRD 90, 011301(R) (2014)

Cheng-Pang Liu

Constraining Neutrino Electromagnetic Properties by Atomic Ion

Outline

2 Exp. Searches & Status

Outline

- 2 Exp. Searches & Status
- 3 Theory Inputs

・ 同 ト ・ ヨ ト ・ ヨ ト

EM Form Factors of Spin-1/2 Particles

The general EM current matrix element:

$$\begin{aligned} \langle p' | j_{\mu}^{(\gamma)}(0) | p \rangle = \bar{u}(p') \Big[F_1(q^2) \gamma_{\mu} - i F_2(q^2) \sigma_{\mu\nu} q^{\nu} \\ + F_A(q^2) \left(q^2 \gamma_{\mu} - \not{q} q_{\mu} \right) \gamma_5 + F_E(q^2) \sigma_{\mu\nu} q^{\nu} \gamma_5 \Big] u(p) \end{aligned}$$

•
$$q \equiv F_1(0)$$
: charge (P,T-even)

•
$$\langle \mathbb{r}^2 \rangle \equiv 6 \frac{d}{dq^2} F_1(q^2)|_{q^2=0}$$
: charge radius squared (P,T-even)

- $\kappa \equiv F_2(0)$: anomalous magnetic dipole moment (P,T-even)
- $d \equiv F_E(0)$: electric dipole moment (P,T-odd)
- $a \equiv F_A(0)$: anapole moment (P-odd,T-even)

q_{ν} in the Standard Model (and Beyond)

Trivial Answer

Zero, by construct.

Non-trivial Answer

Consider: (i) gauge symmetry and (ii) anomaly cancellation

- SM with only ν_L : charge quantization and $q_{\nu} = 0$
- Extended SM with ν_R and Majorana masses: same conclusion
- Extended SM with ν_R and Dirac masses:
 - charge quantization loss (unbroken B L symmetry)
 - $\mathbb{q}_{\nu} = \epsilon$, $\mathbb{q}_{e} = \epsilon$, $\mathbb{q}_{p} = 1 \epsilon$, $\mathbb{e}_{n} = -\epsilon$
 - by charge neutrality of H and $n: |q_{\nu}| \lesssim 10^{-21} e$

Introduction Exp. Searches & Status Theory Inputs Summary

κ_{ν} and d_{ν} , in the Standard Model

- If massless: $\kappa_{\nu} = 0$, $d_{\nu} = 0$ (no chirality flip)
- Now known $m_{\nu} \neq 0$, non-zero κ_{ν} and d_{ν} arise from radiative corrections with mass-term insertion, e.g.:

• Naive dimensional analysis with $m_
u \sim 1 {
m eV}$

- One-loop results for i = j: $\kappa_{\nu} = 3.20 \times 10^{-19} \left(\frac{m_{\nu}}{\text{eV}}\right) \mu_{\text{B}}$, $d_{\nu} = 0$ (Marciano; Lee & Shrock, '77)
- In ultrarelativistic scattering ($m_{
 u} pprox$ 0), EM scattering amplitude depends on

$$\mu_{\nu} = \kappa_{\nu} - i \mathrm{d}_{\nu}$$

Implications of Abnormally-Large \mathbb{q}_{ν} and $\mathbb{\mu}_{\nu}$

- Potential new physics!
- Astrophysical implications
 - Solar neutrino problem ($u_e
 ightarrow
 u_{x
 eq e}$ by B_{\odot})
 - Stellar (\odot , W.D., R.G.,) cooling $(\gamma^* \rightarrow \nu \bar{\nu})$
 - Supernovae and neutron stars cooling $(
 u_L
 ightarrow
 u_R)$
 - Big-Bang nucleosynthesis d.o.f. $(\nu_L o
 u_R)$
- Cosmological implications
 - What if a primordial magnetic field exists? $(
 u_L \leftrightarrow
 u_R)$
 - What if a neutrino decay radiatively? $(
 u_i
 ightarrow
 u_f + \gamma)$

Indirect bounds can be inferred from these astro. and cosmo. constraints:

•
$$q_{\nu} < 10^{-13} - 10^{-15} e$$

•
$$\mu_{
u} < 10^{-10} - 10^{-13} \, \mu_{
m B}$$

Outline

- 2 Exp. Searches & Status
- 3 Theory Inputs

< 63 ►

Introduction Exp. Searches & Status Theory Inputs Summary

Direct Searches of q_{ν} and μ_{ν}

Primary detection channel: the recoil electron in atomic ionization

$$u + e^{-}(A)
ightarrow
u + e^{-} + A^{+}$$

e.g. a non-zero μ_{ν} yields:

Current Limits

• A few results on $\mathbb{\mu}_{\nu}$ (in μ_{B}):

Exp.	ν_l	$\mu_{ u} <$	Yr	Place
GEMMA	$\bar{\nu}_e$ (reac.)	$2.9 imes10^{-11}$	'13	KNPP, RU
TEXONO	$\bar{\nu}_e$ (reac.)	$7.4 imes 10^{-11}$	'07	KSNL, TW
Borexino	ν_{\odot} (⁷ Be)	$5.4 imes10^{-11}$	'08	LNGS, IT
SuperK	ν_{\odot} (⁸ B)	$3.6 imes10^{-10}$	'04	Kamioka, JP
LSND	$ u_{\mu}$ (acc.)	$6.8 imes10^{-10}$	'01	LANL, US
DONUT	$ u_{ au}$ (acc.)	$3.9 imes10^{-7}$	'01	FNAL, US

• A few results on \mathbb{Q}_{ν} (in e):

Exp.	ν_l	$\mathbb{q}_{\nu} <$	Yr	Ву
GEMMA	$\bar{\nu}_e$ (reac.)	$1.5 imes10^{-12}$	'13	Studenikin
TEXONO	$\bar{\nu}_e$ (reac.)	$3.7 imes10^{-12}$	'07	Gninenko et al.

Introduction Exp. Searches & Status Theory Inputs Summary

(courtesy of H. Wong)

Constraining Neutrino Electromagnetic Properties by Atomic Ion

Cheng-Pang Liu

TEXONO Magnetic Moment Searches @ KSNL

- simple compact all-solid design : HPGe (mass 1 kg) enclosed by active NaI/CsI anti-Compton, further by passive shieldings & cosmic veto
- selection: single-event after cosmic-veto, anti-Comp., PSD
- TEXONO data (571/128 days) ON/OFF) [PRL2003; PRD 2007]
 - background comparable to underground CDM experiment :
 1 day⁻¹keV⁻¹kg⁻¹ (cpd)
 DAQ threshold 5 keV analysis threshold 12 keV

Introduction Exp. Searches & Status Theory Inputs Summary

The Ways of Improvement

- The 4 basics: bigger target mass, longer detection time, smaller background, and more intense beam
- A less trivial sensitivity gain: Consider $\nu + e^- \rightarrow \nu + e^-$ at low recoil energies (Vogel & Engel, '89):

$$egin{aligned} &rac{d\sigma_{w}^{(0)}}{dT} \propto T^{0}\,, \ &rac{d\sigma_{\mathbb{H}^{
u}
u}^{(0)}}{dT} \propto rac{1}{T}\,, \ &rac{d\sigma_{\mathbb{Q}_{
u}}^{(0)}}{dT} \propto rac{1}{T^{2}}\,, \end{aligned}$$

- Need low-threshold detectors
 - GEMMA: Ge @ 1.5 keV; TEXONO: Ge @ 5 keV (now @ sub-keV!)

At low energies, atomic effects need to be taken into account!

Outline

2 Exp. Searches & Status

< 63 ►

$\frac{d\sigma}{dT}$: Where Atomic Many-Body Physics Enters

For
$$\nu + A \rightarrow \nu + A^+ + e^-$$
:

$$\begin{split} \frac{d\sigma_{\mathbf{w}}}{dTd\Omega} &= \frac{G_F^2}{2\pi^2} (E_\nu - T)^2 \cos^2 \frac{\theta}{2} \bigg[R_{00}^{(w)} - \frac{T}{q} R_{03+30}^{(w)} + \frac{T^2}{q^2} R_{33}^{(w)} \\ &+ (\tan^2 \frac{\theta}{2} + \frac{Q^2}{2q^2}) R_{11+22}^{(w)} + \tan \frac{\theta}{2} \sqrt{\tan^2 \frac{\theta}{2} + \frac{Q^2}{q^2}} R_{12+21}^{(w)} \bigg] \\ \frac{d\sigma_{\mu}}{dTd\Omega} &= \alpha \mu_{\nu}^2 (1 - \frac{T}{E_{\nu}}) \bigg[\frac{(2E_\nu - T)^2 Q^2}{q^4} R_{00}^{(\gamma)} + \frac{4E_\nu (E_\nu - T) - Q^2}{2q^2} R_{11+22}^{(\gamma)} \bigg] \end{split}$$

• The response functions $R^{(w,\gamma)}_{\mu\nu}$ depend on T and $Q^2 = \vec{q}^2 - T^2$.

• Need transition matrix elements $\langle f | j_{\mu}^{(w,\gamma)} | i \rangle$ of weak (V - A) and EM (V) currents.

The Conventional Approach: Free Electron Approximation

- Suppose E_{ν} and T much larger than atomic scales, electrons can be treated as free
- An atomic *i*th electron is not scattered if $T < B_i$
- FEA scattering formula

$$\left.\frac{d\sigma}{dT}\right|_{\text{FEA}} = \sum_{i=1}^{Z} \theta(T - B_i) \frac{d\sigma}{dT}^{(0)}$$

- No atomic calculation needed
- Validity at sub-keV regimes need justification

Can Atomic Effects Change the Traditional Wisdom?

A huge sensitivity gain in μ_{ν} reported: (Wong et al., PRL '10)

- In contradiction to previous and latter works
- Inadequate equivalent photon approximation being applied (Chen, CPL, et al., '13)

Our Approach: Do the Many-Body Problem

Multi-Configuration Relativistic Random Phase Approximation

- An *ab initio* method based on Hatree-Fock (HF) Approximation
- MC: For open-shell atoms, ground states often contain more than one configuration.
- R: Include leading relativistic effects by solving the Dirac, instead of Schrödinger, equation. [MCDF]
- RPA: Build in (part of) two-body correlations which are important for excited states and transitions.

Specifics for Ge:

- Ground state $|{}^{3}P_{0}\rangle = c_{1} |[\text{Zn}]4p_{1/2}^{2}\rangle + c_{2} |[\text{Zn}]4p_{3/2}^{2}\rangle$
- $Z \alpha \sim 1/4$, not small
- Need continuum states $|{
 m Ge}^+,e^angle$

Benchmark: $\gamma + { m Ge} ightarrow { m Ge}^+ + e^-$ (Chen, Chi, Huang, CPL, et al., '14)

- Exp. data taken from "Atomic Data and Nuclear Data Tables 54, 181-342 (1993)"
- For $T \ge 100 \,\mathrm{eV}$, data are well reproduced, with discrepancy $\lesssim 5\%$
- Caution: photoabsorption only benchmarks the on-shell transverse response (best one can do so far)

Introduction Exp. Searches & Status Theory Inputs Summary

Ge lonization by $\mu_{\bar{\nu}_e}$ (Chen, Chi, Huang, CPL, et al., '14)

Setting $\mu_{\bar{\nu}_e} = 2.9 \times 10^{-11} \,\mu_{\rm B}$:

(a) $E_{y} = 1 \text{ MeV}$

- Typical for reactor $\bar{\nu}_e$
- FEA is good for $T \gtrsim 1 \, \mathrm{keV}$
- FEA overestimates at $T \lesssim 1 \text{ keV}$ for both weak and μ_{ν} interactions

- typical for low-E source, e.g. $^{3}\mathrm{H:}~Q\sim18\,\mathrm{keV}$ (McLaughlin & Volpe, 04)
- FEA has a kinematic cutoff ,i.e Compton edge (2B vs. 3B fina state)

Ge lonization by $\mathbb{Q}_{\overline{\nu}_e}(Chen, Chi, Li, CPL, et al., '14)$

Setting $q_{\bar{\nu}_e} = 1 \times 10^{-12} e$:

- FEA largely underestimates
- Equivalent Photon Approximation (EPA) works in certain regions

Updated Limits on $\mathbb{q}_{\bar{\nu}_e}$ and $\mathbb{\mu}_{\bar{\nu}_e}$

- Using MCRRPA instead of FEA, with the GEMMA '13 data set (threshold at 2.8 keV)
 - $q_{\bar{\nu}_e} < 2.1 \times 10^{-12} \ e \to 1.1 \times 10^{-12} \ e$
 - $\mu_{\bar{\nu}_e} < 2.9 \times 10^{-11} \, \mu_{\rm B} \rightarrow 2.9 \times 10^{-11} \, \mu_{\rm B}$
- Projected sensitivities for the future low-threshold germanium detectors (threshold at \sim 0.1 keV)

Outline

Introduction

- 2 Exp. Searches & Status
- 3 Theory Inputs

・ 同 ト ・ ヨ ト ・ ヨ ト

Conclusion

- Atomic physics starts to be relevant for neutrino detection with detectors at sub-keV thresholds.
- High-quality atomic calculations substantially reduce the theoretical errors in understanding low-energy detector responses and subsequent physical results.
- The procedure can be applied to other neutral particle detections, the current shopping list contains
 - Light Dark Matter: $\chi + e^-({\rm A}) \to \chi + {\rm A}^- + e^-$ with A = Ge, Xe, Ar, etc.
 - Sterile Neutrino: $\nu_{\rm s} + e^-({\rm A}) \rightarrow \nu_{\rm a} + {\rm A}^- + e^-$ (via $\nu_{\rm s} \rightarrow \nu_{\rm a} + \gamma^*$)
 - Suggestions are welcome!

Acknowledgement

A rather unique collaboration consists of NP/HEP theorists, atomic theorists, and experimentalists:

- National Taiwan University Jiunn-Wei Chen, Keh-Ning Huang, Hao-Tse Shiao, Chih-Liang Wu, Chih-Pan Wu
- National Dong Hwa University Hsin-Chang Chi
- Institute of Physics, Academia Sinica / TEXONO Hau-Bin Li, Lakhwinder Singh, Henry T. Wong

THANK YOU

э

Cheng-Pang Liu Constraining Neutrino Electromagnetic Properties by Atomic Ion

・ロ・ ・ 日・ ・ ヨ・ ・ ヨ・