J/ψ production at the STAR experiment

Petr Chaloupka

for the STAR collaboration

Czech Technical University in Prague

Outline

- Motivation: QGP and quarkonia
- The STAR experiment at RHIC
- J/ψ production in p+p and polarization measurements
- J/ ψ production and elliptic flow in Au+Au collisions at $\sqrt{s_{NN}}=200 \text{ GeV}$
- Energy dependence of $J/\psi R_{AA}$
- J/ψ in U+U collisions
- Outlook
- Conclusions

Quarkonia as a probe of QGP

 $T_{c} < T$

Large masses of c, b quarks

 J/ψ

T=0

- created during initial stages of collision
- Due to color screening of quark potential in QGP quarkonium dissociation is expected

H. Satz, Nucl. Phys. A (783):249-260(2007)

 Suppression determined by medium temperature and binding energy.

 $0 < T < T_c$

Sequential suppression of different quarkonia states is expected.

..see next STAR talk by R. Vertesi about Υ.

Other effects

- Quarkonium production mechanism is not well understood.
- Observed yields are a mixture of direct production + feed-down
 - direct J/ ψ (~60%) +feed-down ~30% χ_c & ~10% ψ '
 - B-meson decay
- Hot/dense medium effects
 - Coalescence from uncorrelated charm pairs.
- Suppression and enhancement in the "cold" nuclear medium
 - PDF modification in nucleus shadowing, color glass condensate
 - Initial state energy loss
 - Nuclear absorption break up of bound state precursor by collisions with passing nucleons
 - Dissociation by interaction with co-movers in final state

X. Zhao, R.Rapp, PRC82, 064905 (2010)

Measure J/ ψ at different p_T , in different colliding systems, and collision energies.

Experimental approach - R_{AA}

baseline - p+p

cold nuclear matter effects - d+Au

$$R_{dAu} = \frac{1}{\langle N_{coll} \rangle} \frac{dN/dy^{dAu}}{dN/dy^{pp}}$$

hot/dense medium effects - Au+Au

$$R_{AA} = rac{1}{\langle N_{coll}
angle} rac{dN/dy^{AuAu}}{dN/dy^{pp}}$$

 $R_{AA} = 1$ for no modification of the production in the medium.

STAR experiment

$\rightarrow e^+e^-$ at STAR J/Ψ

EEMC Magnet

MTD

BEMC

3<p_<5 GeV/c</p>

3.4 3.6 3.8

5<p_<10 GeV/c</pre>

TPC

- $J/\psi \rightarrow e^+e^-$ (b.r. 5.9%) at midrapidity
 - Electron identification at |y|<1

Combinatorial background estimated by like-sign and mixed events techniques

\setminus s_{NN} = 200 GeV Au+Au 0-60%

STAR low-p_T : arXiv:1310.3563 **high-p**_T : Phys.Lett. B722, 55 (2013)

Electron ID

Electron ID

Electron ID

J/ψ in p+p collisions

Why p+p collision?

Baseline for heavy ion collisions

$$R_{AA} = \frac{1}{\langle N_{coll} \rangle} \frac{dN/dy^{AuAu}}{dN/dy^{pp}}$$

- Study quarkonium production mechanism
 - Heavy quarks are created in hard processes calculable in pQCD
 - Soft processes forming quarkonia require models

J/ψ in p+p at 200GeV

- STAR year 2009 data
 - Extending p_T to 0-14 GeV/c
 - Good agreement with PHENIX
- Comparison with J/ψ production models
 - prompt NLO CS+CO: model describes the data for p_T > 4 GeV/c
 - prompt CEM model can reasonably describe the p_T spectra (overpredicts the data at p_T ~ 3 GeV/c)
 - direct NNLO* CS model misses high- p_T part

Models predict different J/ ψ polarizations ...

Inclusive J/ψ spectra:

STAR EMC : Phys. Lett. B 722 (2013) 55 **STAR MB**: Acta Phys. Polonica B Vol.5, No 2 (2012), 543

PHEN STAR 2005&2006: Phys. Phys. communicatio с В Rev. 092004 C80 (2012)041902(R) (2009) Phys. Rev. Lett. 101, 152001 (2008) and

.Ma, K.Wang, and K.T.Chao

, Phys.

51 114001 (2011) and pri-

. Rev. D (2008)

) 84 125

Measuring J/ ψ polarization

 Angular distribution of the decay lepton pair in the J/ψ rest frame – sensitive to polarization

Integrated over azimuthal angle

 $W(\cos\theta) \propto 1 + \lambda_{\theta} \cos^2 \theta$

 $\lambda_{\,\theta}$ - polarization parameter

 $\lambda_{\,\theta}$ = -1 longitudinal polarization

 $\lambda_{\theta} = 0$ no polarization

 $\lambda_{\theta} = 1$ transverse polarization

C. S. Lam, W.-K. Tung, Phys. Rev. D 18 (1978) 2447–2461

J/ψ polarization in p+p at 200 GeV

- Polarization parameter λ_θ
 - in helicity frame at |y| < 1 and
 2 < p_T < 6 GeV/c
- RHIC data indicate trend towards longitudinal polarization with increasing p_T
- Trend of data inconsistent with COM prediction
- 2011 500 GeV p+p data analyses underway - expected precision improvement
 - ~1.8 pb⁻¹ vs ~22 pb⁻¹

PHENIX: Phys. Rev. D 82, 012001 (2010) COM: Phys. Rev. D 81, 014020 (2010) CSM NLO ⁺ : Phys. Lett. B, 695, 149 (2011) and private communication

STAR: arxiv: 1311.1621

J/ψ and $\psi(2S)$ measurements in p+p 500 GeV

- J/ψ production measurements at highest RHIC collision energy up to 20 GeV/c
- First measurement of $(\psi' / J/\psi)$ ratio in p+p at 500 GeV
 - Further test of charmonium production models
 - Constrain ψ' feed-down contribution to J/ψ
 - No collision energy dependence observed
 - Consistent with other experiments

J/ψ spectra in Au+Au at 200 GeV

- Large p_T range
 - Covers 0-10 GeV/c
- Tsallis Blast-Wave model (TBW) used for comparison
 - Hydro-inspired (blast-wave) freezeout parametrization
 - Particle emission locally described by Levy distribution.
- J/ψ spectra softer at low p_T than the TBW prediction with the same freeze-out parameters as for light hadrons
 - Small radial flow?
 - Recombination at low p_T?

Tsallis Blast-Wave model: Z.Tang et al., Chin.Phys.Lett. 30, 031201 (2013) PHENIX: Phys. Rev. Lett. 98 (2007) 232301

 $\begin{array}{l} {\rm STAR \ low-p_T \ Au+Au, \ CuCu: arXiv:1310.3563} \\ {\rm high-p_T \ Au+Au: \ Phys.Lett. \ B722, \ 55 \ (2013)} \\ {\rm high-p_T \ Cu+Cu: \ Phys. \ Rev. \ C \ 80 \ (2009) \ 041902} \end{array}$

J/ψ spectra in Au+Au at 200 GeV

Viscous hydrodynamics

- J/ψ decoupling temperature of 120 and 165 MeV
- fails to describe the low-p_T spectra
- fails to describe the high-p_T v₂ (see next slide)

Y. Liu et al.

- model includes J/\u03c6 suppression due to color screening and the statistical regeneration
- peripheral: initial production dominates.
 central: regeneration becoming m

central: regeneration becoming more significant at low p_{T} .

Coalescence of charm quarks is needed to describe the J/ψ production.

Y. Liu et al., Phys. Lett. B 678, 72 (2009) U. W. Heinz and C. Shen (2011), private communication.

J/ψ elliptic flow

- Consistent with zero $(p_T > 2 \text{ GeV/c})$
- The only hadron so far that does not appear to flow at RHIC energies.

Disfavors coalescence from thermalized charm quarks at high $\ensuremath{p_{\text{T}}}$.

[32] V. Greco, C.M. Ko, R. Rapp, PLB 595, 202.

[34] X. Zhao, R. Rapp, arXiv:0806.1239 (2008)

[36] U. Heinz, C. Shen, private communication.

[35] Y. Liu, N. Xu, P. Zhuang, Nucl. Phy. A, 834, 317.

Message from d+Au

- $R_{dAu} \approx 1$ for high p_T
 - Cold nuclear effects are small at high-p_T

High- p_T J/ ψ carry cleaner signal with less CNM influence.

d+Au: STAR: J.Phys.Conf.Ser. 455 (2013) 012038 PHENIX: Phys. Rev. C 87, 034904 (2013) Model: E.Eskola, H.Paukkunenea and C.Salgo, Nucl. Phys. A 830, 599 (2009)

J/ψ suppression in Au+Au at 200 GeV

Nuclear modification factor:

- Larger suppression at low-p_T at all centralities
- Suppression decreasing towards high-p_T
 - Consistent with unity at high p_T (semi-)peripheral collisions
 - Remaining suppression at high-p_T in central collisions
- Agreement with theory
 - Includes effects of coalescence
 - Zhao and Rapp : additional effects of formation-time effect and B hadron feed-down

STAR low- p_T : arXiv:1310.3563 high- p_T : Phys.Lett. B722, 55 (2013)

Liu et al., PLB 678, 72 (2009) Zhao and Rapp, PRC 82, 064905(2010) PLB 664, 253 (2008)

J/ψ supression: high-p_T vs low-p_T

- System size (N_{part}) dependence
 Suppression grows with the size of the system
- J/ψ in central collisions suppressed even at high p_{T}
- Models including initial production and recombination reasonably describe the J/ ψ in our measured p_{T} region
- High p_T data less suppressed than low p_T
 - No recombination in this region
 - No CNM effects (from d+Au)

 J/ψ suppression in Au+Au at high- p_{τ} is a manifestation of the QGP effects.

STAR low- p_T : arXiv:1310.3563 high- p_{T} : Phys.Lett. B722, 55 (2013) Liu et al., PLB 678, 72 (2009) Zhao and Rapp, PRC 82, 064905(2010) PLB 664, 253 (2008) PHENIX Phys. Rev. Lett. 98, 232301 (2007)

$J/\psi R_{AA}$ – energy dependence

- Similar suppression at RHIC and SPS
 - Canceling influence of melting and regeneration?
- LHC: suppression is reduced at low-p_T
 - Suggests dominance of regeneration production mechanism at the LHC.

RHIC Beam Energy Scan (BES) program: a unique tool to study the interplay of CNM, screening, and regeneration effects

STAR low-p_T : arXiv:1310.3563 high-p_T : Phys.Lett. B722, 55 (2013) ALICE: PLB 743 (2014) 314-327

22

J/ψ at Beam Energy Scan (BES)

- J/ψ observed at 200, 62.4 , and 39 GeV
- 62.4 and 39 GeV data from Run10
- Signal up to p_T 4 GeV/c for 39 and 62.4 GeV

J/ψ in Au+Au-energy dependence

Energy dependence of $J/\psi R_{AA}$

- Similar suppression in Au+Au at 200, 62.4 and 39 GeV
 - p+p reference is based on CEM calculations
 - Large theoretical uncertainty
- Consistent with theoretical calculations
 - Almost compensating interplay of melting and coalescence

U+U collisions at 193 GeV

- Uranium nucleus is larger than Au and non-spherical
- U+U collisions provide higher energy density then Au+Au
 - Tip-to-tip collisions highest energy density
- Larger number of binary collisions
 - Increased charm production and coalescence
 - $N_{stat}^{J/\psi} \propto N_c^2$
- These two effects go in opposite directions

U+U collisions: study of interplay between color screening and coalescence

Tip-to-tip collision

STAR Collaboration: arXiv 1310.3563 (2013)

$J/\psi R_{AA}$ in U+U

- Nuclear modification factor as a function of p_T similar to Au+Au
 - p+p reference from 200 GeV used

Muon Telescope Detector (MTD)

Heavy Flavor Tracker (HFT)

- Inner tracking system precise pointing resolution
- Separation of prompt and non-prompt J/ ψ (B \rightarrow J/ ψ + X; ct \approx 500 μ m)
- Installed for year 2014

Summary and outlook

- J/ψ in p+p 200GeV
 - NLO CS+CO and CEM models describe $J/\psi p_T$
 - p_T polarization trend different from COM prediction
- J/ψ in p+p 500 GeV
 - First measurement of ψ (2S) consistent with previous measurements at different energies
- J/ψ in Au+Au at 200 GeV
 - Significant suppression increases with centrality and decreases with p_T
 - Elliptic flow consistent with zero (p_T >2 GeV/c) disfavors coalescence from thermalized (anti-)charm quarks for p_T > 2 GeV/c
- J/ψ in Au+Au at 39 GeV and 62.4 GeV and U+U collisions at 193 GeV
 - Similar suppression as in Au+Au 200 GeV within uncertainties
 - Consistent with interplay of melting and regeneration
- Outlook
 - Polarization measurements in p+p at 500 GeV
 - Muon Telescope Detector: $J/\psi \rightarrow \mu^+\mu^-$
 - Heavy Flavor Tracker: separation of prompt and non-prompt J/ψ

Backup slides

Message from J/ ψ in d+Au 200 GeV

Cold nuclear effects important for interpreting Au+Au results.

- R_{dAu} consistent with model calculations
 - shadowing from EPS09 nPDF
 - nuclear absorption: $\sigma_{abs}^{J/\psi} = 3mb$

d+Au:

STAR: J.Phys.Conf.Ser. 455 (2013) 012038
PHENIX: Phys. Rev. C 87, 034904 (2013)
Model: E.Eskola, H.Paukkunenea and C.Salgo, Nucl. Phys. A 830, 599 (2009)
R.Vogt, Phys. Rev. C 81, 044903 (2010)

Measurements of J/ ψ cross section in 39 and 63 GeV p + p collisions

Experiment	Reaction	Energy (GeV)	Cross section (y=0) (nb/nucleon)
E771[1]	p + Si	38.8	202±17
E789 [2]	p + Au	38.8	170±30
ISR [3]	p + p	62.7	172±15
ISR [4]	p + p	63	250±56

- [1] T. Alexopoulos et al, Phys. Rev. D55, 3927 (1997)
- [2] M.H. Schub et al., Phys. Rev. D 62, 1307 (1995)
- [3] A.G. Clark et al., Nucl. Phys. B 142, 29 (1978)
- [4] C. Kourkounelis et al., Phys. Lett. 91B, 481 (1980)
- [5] R. Nelson, R. Vogt et al, arXiv:1210.4610v1

[6] A. Gribushin (E706) et al., Phys. Rev. D 62, 012001 (2000).

- Experimental results on cross section and p_T shape are inconsistent. We use Color Evaporation Model estimations as our p + p references for 39 and 62.4 GeV.
- CEM describes the p_T and y distributions in 200 GeV p + p collisions^[5].

