

AM, <u>Phys. Rev. C 90, 021901(R) (2014)</u> AM, arXiv:1408.1410 [nucl-th]

Elliptic flow of thermal photons in chemically non-equilibrated QCD medium

Akihiko Monnai RIKEN BNL Research Center Nishina Center for Accelerator-Based Science, RIKEN

PANIC 2014

25th August 2014, Hamburg University, Hamburg, Germany

Quark-gluon plasma (QGP): many-body system of deconfined quarks and gluons

The QGP created in high-energy heavy ion collisions is quantified as a relativistic fluid with extremely small viscosity

Au-Au, Au-Cu (200 GeV) and U-U (193 GeV) at RHIC Pb-Pb (2.76 TeV) at LHC

It is a QCD phenomenon; what can an electromagnetic probe tell us?

Photon emission in heavy ion collisions (low p_{T})

The hot medium is opaque in terms of QCD; transparent in terms of electromagnetism

Hadrons: Most of information before freeze-out is lost Photons: Retain information during time evolution

Photon emission in heavy ion collisions (low p_{T})

The hot medium is opaque in terms of QCD; transparent in terms of electromagnetism

Hadrons: Most of information before freeze-out is lost Photons: Retain information during time evolution

Photon emission in heavy ion collisions (low p_T)

Thermal photons (hadronic) Thermal photons (QGP)

- from black-body radiation

Prompt photons

- from hard processes

The hot medium is opaque in terms of QCD; transparent in terms of electromagnetism

Photon emission in heavy ion collisions (low p_T)

Decay photons

- from hadronic decay

Thermal photons (hadronic) Thermal photons (QGP)

- from black-body radiation

Prompt photons

- from hard processes

The hot medium is opaque in terms of QCD; transparent in terms of electromagnetism

Photon emission in heavy ion collisions (low p_T)

Decay photons

- from hadronic decay

Thermal photons (hadronic) Thermal photons (QGP)

- from black-body radiation

Prompt photons

- from hard processes

The hot medium is opaque in terms of QCD; transparent in terms of electromagnetism

Photon emission in heavy ion collisions (low p_T)

Decay photons

- from hadronic decay

Thermal photons (hadronic) Thermal photons (QGP)

- from black-body radiation

Prompt photons

- from hard processes

The hot medium is opaque in terms of QCD; transparent in terms of electromagnetism

Heavy-ion observable: Elliptic flow (v₂)

$$\frac{dN}{d\phi} = \frac{N}{2\pi} [1 + 2v_1 \cos(\phi - \Psi_1) + 2v_2 \cos(2\phi - 2\Psi_2) + 2v_3 \cos(3\phi - 3\Psi_3) + \dots]$$

If the system is strongly interacting (= hydro-like), v_2 is large If the system is weakly interacting (= gas-like), v_2 is small

Motivation

Experimental results of flow anisotropy

- Hadronic v_2 is found to be large at RHIC & LHC
 - > Nearly-ideal hydrodynamic models work well
 - An evidence for strongly-coupled QGP fluid; early equilibration (τ < 1 fm/c) is suggested</p>

Motivation

Experimental results of flow anisotropy

- Hadronic v_2 is found to be large at RHIC & LHC
 - Nearly-ideal hydrodynamic models work well
 - An evidence for strongly-coupled QGP fluid; early equilibration (τ < 1 fm/c) is suggested

• Direct photon v_2 is found to be large at RHIC & LHC

Hydro models predict small v₂ because of the contribution from earlier stages with little anisotropy (*Note: QGP is EM transparent*)
 No definite answer so far; recognized as

"photon v₂ puzzle"

Motivation

Experimental results of flow anisotropy

- Hadronic v₂ is found to be large at RHIC & LHC
 - Nearly-ideal hydrodynamic models work well
 - An evidence for strongly-coupled QGP fluid; early equilibration (τ < 1 fm/c) is suggested</p>

• Direct photon v_2 is found to be large at RHIC & LHC

- Hydro models predict small v₂ because of the contribution from earlier stages with little anisotropy (*Note: QGP is EM transparent*)
 No definite answer so far; recognized as
 - "photon v₂ puzzle"

Kolb et al., PLB 500, 232 (2001)

Properties of the medium

Color glass condensate (CGC): Colliding nuclei are saturated gluons
 QGP/hadronic fluid: Equilibrated <u>quark-gluon</u> plasma
 Chemical equilibration does not necessary coincides with thermalization (cf: AM and B. Müller, arXiv: 1403.7310)

Fewer quarks + more gluons at the onset of QGP fluid

Medium anisotropy develops in time evolution

Equilibrated QGP (small v₂)

Quark-gluon plasma

Quark-gluon plasma

Quark-gluon plasma

Fewer quarks + more gluons at the onset of QGP fluid

Fewer quarks + more gluons at the onset of QGP fluid

Fewer quarks + more gluons at the onset of QGP fluid

Fewer quarks + more gluons at the onset of QGP fluid

The model

(2+1)-dimensional ideal hydrodynamic model + rate equations

Input for numerical analyses

Hydrodynamic parameters (Initial conditions + fluid properties)

- Gluon energy distribution: Kolb, Sollfrank and Heinz, PRC 62, 054909 (2000)
- Quark energy distribution: 0 GeV/fm³
- Initial time: 0.4 fm/c
- Equation of state: Hadron resonance gas (mass below 2 GeV) + Parton gas (N_f = 2)
- Chemical reaction rates: $r_i = c_i T$ where c_i ranges are $0.2 \le c_b \le 2$ ($au_b \sim 0.5-5 \text{ fm}/c$) and $0 \le c_{a,c} \le 3$ ($au_{a,c} \sim 0.3-\infty \text{ fm}/c$)

Photon emission rate

$$E\frac{dR^{\gamma}}{d^{3}p} = \frac{1}{2}\left(1 - \tanh\frac{T - T_{c}}{\Delta T}\right)E\frac{dR_{hadron}^{\gamma}}{d^{3}p} + \frac{1}{2}\left(1 + \tanh\frac{T - T_{c}}{\Delta T}\right)E\frac{dR_{QGP}^{\gamma}}{d^{3}p}$$
Turbide, Rapp and Gale, PRC 69, 014903
Traxler and Thoma, PRC 53, 1348
where $T_{c} = 0.17$ GeV and $\Delta T = 0.017$ GeV

Results

Elliptic flow of thermal photons – c_b dependence

Late quark chemical equilibration ($\tau_{\rm chem} \sim 1/c_b T$) leads to enhancement of thermal photon v_2

 $au_{
m chem} \sim 2 \, {
m fm}/c$ is motivated in an early equilibration model (AM and B. Müller, arXiv: 1403.7310) $\langle - \rangle c_b = 0.5$ for $T \sim 0.2 \, {
m GeV}$

Results

Elliptic flow of thermal photons – c_{a,c} dependence

Thermal photon v_2 is slightly enhanced for faster gluon-involved equilibration processes

because quark production in early stages is suppressed due to quicker dampening of gluon overpopulation due to recombination

Results

Transverse momentum spectra of thermal photons

 p_{T} spectra is reduced by late quark chemical equilibration

Effect is limited for the chosen input; *however* more sophisticated photon emission rate and equation of state would be important (Cf. Gelis et al., JPG 30, S1031)

Summary and outlook

- Thermal photon v₂ from chemically non-equilibrated QGP is investigated
 - Late quark production leads to visible enhancement of v_2 , contributing positively to resolution of "photon v_2 puzzle"
 - Evolution of bulk medium from CGC to QGP is a key
 - Late gluon equilibration slightly reduces v₂
 - Net yield of thermal photons is reduced
- Future prospects include:
 - Introduction of dynamical equation of state, more realistic initial conditions, shear and bulk viscosities etc.
 - Estimation of the contribution from prompt photons
 - Other effects in non-equilibrated QGP, e.g., heavy quarks

Prompt photon v_n

Optical effects in QGP medium

AM, arXiv:1408.1410 [nucl-th]

Transparent medium has a non-unity refractive index

A hot QCD medium works as a 4D lens

Geometrical anisotropy (ε_2 , ε_3 , ...) is directly mapped onto thermal and prompt photon flow harmonics (v_2 , v_3 , ...)

Numerical analyses – prompt photon v_n

- Positive flow harmonics; not large enough w/ the model index $n^2 = 1 a^2 T^2 / \omega^2$ based on HTL
- Critical opalescence near T_c ?
- Semi-transparency at ultra-low momentum (determining plasma frequency of QGP)?

The end

- Vielen Dank f
 ür Ihre Aufmerksamkeit!
- Website: http://tkynt2.phys.s.u-tokyo.ac.jp/~monnai/

Observables of the hot QCD matter

Electromagnetic probes: Jet quenching, heavy quarks: Hydrodynamic medium: EM transparency color opaqueness strong coupling

Observables of the hot QCD matter

Electromagnetic probes: Jet quenching, heavy quarks: Hydrodynamic medium: EM transparency color opaqueness strong coupling

Photon v_n puzzle

Possible (not *all*) reasons: an overview

Collision Equilib		bration Free		e-out "Correct"	
Bulk	Pre-equilibrium	Hydrodynamics		Hadron gas	
Photons		QGP thermal photons	Hadronic thermal photons	(Decay photons)	
Prompt photons "Wrong"					ong"

Prompt photons

Possible (not *all*) reasons: an overview

Thermal photon emission/v_n estimate needs modification

Possible (not *all*) reasons: an overview

- Thermal photon emission/v_n estimate needs modification
- Prompt photon emission/v_n estimate needs modification

Photon v_n puzzle

Possible (not all) reasons: an overview

Prompt photons

- Thermal photon emission/v_n estimate needs modification
- Prompt photon emission/v_n estimate needs modification
- Other sources of photons are not considered

Photon v_n puzzle

Possible (not *all*) reasons: an overview

Со	llision Equilik	oration	Freeze	e-out "Corr	ect"
Bulk	Pre-equilibrium	Hydrodynamics		Hadron gas	
Photons		QGP thermal photons	Hadronic thermal photons	(Decay photons)	
Prompt photons "Wrong"					

Prompt photons

- Thermal photon emission/ v_n estimate needs modification
- Prompt photon emission/v_n estimate needs modification
- Other sources of photons are not considered
- Other effects which work on photons are missing

Possible (not *all*) reasons: an overview

Collision Equilibration			Freeze	e-out "Corr	rect"
Bulk	Pre-equilibrium	Hydrodynamics		Hadron gas	
Photons		QGP thermal photons	Hadronic thermal photons	(Decay photons)	

Prompt photons

"Wrong"

- Thermal photon emission/v_n estimate needs modification
- Prompt photon emission/v_n estimate needs modification
- Other sources of photons are not considered
- Other effects which work on photons are missing
- Bulk evolution needs modification

Possible (not *all*) reasons: an overview

Coll	ision Equilib	ration	Freeze	Freeze-out "Correc		
Bulk	Pre-equilibrium	Hydrodynamics		Hadron gas		
Photons		QGP thermal photons	Hadronic thermal photons	(Decay photons)		

Prompt photons

"Wrong"

- Thermal photon emission/v_n estimate needs modification
- Prompt photon emission/v_n estimate needs modification
- Other sources of photons are not considered
- Other effects which work on photons are missing
- Bulk evolution needs modification
- Experimental data needs more statistics

Possible (not *all*) reasons: an overview

Collision Equilibration			Freeze	e-out "Corr	ect"
Bulk	Pre-equilibrium	Hydrodynamics		Hadron gas	
Photons		QGP thermal photons	Hadronic thermal photons	(Decay photons)	

Prompt photons

- Thermal photon emission/ v_n estimate needs modification
- Prompt photon emission/v_n estimate needs modification
- Other sources of photons are not considered
- Other effects which work on photons are missing
- Bulk evolution needs modification
- Experimental data needs more statistics

"Wrong"

This talk

Photon v_n puzzle

Possible (not *all*) reasons: an overview

Prompt photons

- Thermal photon emission/ v_n estimate needs modification
- Prompt photon emission/v_n estimate needs modification
- Other sources of photons are not considered
- Other effects which work on photons are missing
- Bulk evolution needs modification
- Experimental data needs more statistics

Direct photons are informative

PANIC 2014, 25th August 2014, Hamburg University, Hamburg, Germany

Next slide:

Properties of bulk medium

gluon

The system transits from CGC to QGP

- Color glass condensate (CGC) (τ < 0 fm/c)</p>
- Gluons emitted from gluons emit gluons in a fasttravelling nucleon
 - They start to overlap and saturated
 - QCD matter at the initial stage of heavy ion collisions is dominated by gluons

- QGP/hadornic fluid (τ ~ 1-10 fm/c)
- Azimuthal momentum anisotropy
 ν₂ is large compared with spatial
 one ε₂
 - QCD matter is locally equilibrated at some point and behaves as a fluid

gluon

glughon

Momentum anisotropy

Time evolution of medium "elliptic flow"

Elliptic flow is quickly developed

Effects of initial absence of quarks would be large

On equation of state

Doesn't decreased degree of freedom in the EoS leads to higher initial T for the same entropy density?

A. Yes.

However, separation of the quark and the gluon contributions for an arbitrary EoS is not trivial (e.g. crossover at $N_f = 2+1$, 1st order transition at $N_f = 0$).

Also gluon overpopulation may increase the effective DoF.

	d _q	d _g	d _{total} (eq)	d _{total} (init)
Nf = 0	0	16	16	(16)
Nf = 1	12	16	26.5	25
Nf = 2	24	16	37	25

Thermal vs. chemical equilibration

Collinear parton splitting picture

AM and B. Mueller, arXiv:1403.7310 [nucl-th]

• Comparison of f_g (pure gauge), f_g (N_f = 3) and f_q (N_f = 3)