Search for Higgs bosons produced in association with top quarks with the ATLAS detector

<u>Stefan Guindon</u> on behalf of the ATLAS Collaboration University at Albany, State University of New York PANIC 2014 - Hamburg, Germany August 25 - 29, 2014

Motivation

- Discovery of the Higgs Boson is only the first step
 - Many of its properties still unknown
- \bullet Strongest SM coupling with the top quark $~Y_t \sim 1$
 - σ(*ttH*) ~ Y_t²
- Makes $t\bar{t}H$ a very interesting production mechanism to study

- Can make indirect constraints via other production and decay mechanisms
- Top quark is the largest contributor
- Assumption of no new particles!

g

00000

00000

g

- Direct measurement of Y_t can be made with $t\bar{t}H$ production
- *tH* production sensitive to relative sign of Higgs coupling to top and W
- Probing of new physics:
 - Both coupling and final state excess

Η

t**t**H Production and Decay

- $t\bar{t}H$ one of the four Higgs boson production mechanisms
- Smallest cross section of four
 - $\sigma(t\bar{t}H)$ @ 8 TeV = 130 fb $\rightarrow \sim 2600$ events with 20 fb⁻¹
- Suffers from very large background due to $t\bar{t}+X$
- Ratio of $t\bar{t}H$ to $t\bar{t}$ significantly increases with higher luminosity

√s (TeV)	7	8	14
σ(<i>tī</i> H) (m⊣=125 GeV) (fb)	86	130	611
σ(<i>tī</i>) (pb)	177	253	950

Higgs Decay	Branching (%)
$H \rightarrow bb$	58%
H -> WW / ZZ / тт	30%
$H \rightarrow \gamma \gamma$	0.2%

- Largest branching fraction, large background from $t\bar{t}+HF$
- Multilepton final states, small backgrounds from $t\bar{t}+V$ and $t\bar{t} + jets$ (w/ fake leptons)
- Small branching fraction, clean signature

tīH(yy) Analysis Strategy

• General Analysis strategy:

- Statistics limited → event selection to maximize acceptance
- Background estimated via sideband analysis in m(γγ) distribution

2 isolated photons

• Event selection is split into hadronic and leptonic event types

• Hadronic: three categories

(exactly 0 leptons)

- \geq 6 jets (p_T \geq 25 GeV) \geq 2 b-tags (80 % W.P.)
- \geq 5 jets (p_T \geq 30 GeV) \geq 2 b-tags (70 % W.P.)
- \geq 6 jets (p_T \geq 30 GeV) \geq 1 b-tags (60 % W.P.)
- Leptonic: ≥1 lepton, ≥1 b-jets, ET^{miss} > 20 GeV
- Targeting both single lepton and dilepton tt decays

 Measurement of 7 TeV (4.5 fb⁻¹) and 8 TeV (20.3 fb⁻¹)

Category	√s (TeV)	N(H)	N(B)	ttH(%)
Leptonic	8	0.59	0.9 (+0.6 / -0.4)	80.3
Hadronic	8	0.50	2.7 (+0.9 / -0.7)	84.3
Leptonic	7	0.10	0.5 (+0.5 / -0.3)	72.8
Hadronic	7	0.07	0.5 (+0.5 / -0.3)	81.1

- Measurement: resonance peak in m(γγ) between 105 and 160 GeV
- Background described by an exponential function

tīH(yy) Results

leptonic Events / 5 GeV ATLAS Preliminary Data 5 $\sqrt{s} = 8 \text{ TeV} \int \text{Ldt} = 20.3 \text{ fb}^{-1}$ Background fit $t\bar{t}H, H \rightarrow \gamma\gamma, m_{H} = 125.4 \text{ GeV}$ $\mu = 1.3$ 8 TeV leptonic category 3 2 110 120 130 140 150 160 m_{yy} [GeV] hadronic 12 Events / 5 GeV ATLAS Preliminary Data 10 $\sqrt{s} = 8 \text{ TeV} \int \text{Ldt} = 20.3 \text{ fb}^{-1}$ Background fit $t\bar{t}H, H \rightarrow \gamma\gamma, m_{H} = 125.4 \text{ GeV}$ $\mu = 1.3$ 8 8 TeV hadronic category 6 4 2 120 130 140 150 110 160 m_{yy} [GeV]

- Combination of leptonic and hadronic channels (both 7 and 8 TeV)
- 95% CL observed (expected) limit:
 - $6.5 \times SM (4.9 \times SM)$ for $m_H = 125.4 \text{ GeV}$
- Fitted µ(*t̄tH*) : 1.2^{+2.5}-1.7 (stat.) ^{+0.7}-0.4 (syst.)

tīH(yy) Candidate Event

- Event properties:
- Leptonic Channel
- m(**γ**γ) 126.6 GeV
- Photons p_T:
 - 61 GeV
 - 39 GeV
- 4 jets + 1 lepton
- 1 b-tag w/ soft muon

6

• $E_T^{miss} = 43 \text{ GeV}$

ttH(bb) Analysis Strategy

- Very complex final state:
 - I+jets: 4 b's, 2 q's and 1 lepton
 - dilepton: 4 b's and 2 leptons
- Very small S/B \rightarrow use background dominated regions in profile likelihood fit to reduce uncertainties in signal regions
- Large background and sizeable systematics have a large impact on the sensitivity

- Categorize events according to jet and b-tag multiplicities
- Use jet scalar sum p_T (HT) in background regions and Neural Network (NN) in signal regions

l+jets	2 b-tags	3 b-tags	4 b-tags
4 jets	HT	HT	HT
5 jets	HT	NN HF	NN
6 jets	HT	NN	NN
	<u> </u>		L
dilepton	2 b-tags	3 b-tags	4 b-tags
<i>dilepton</i> 2 jets	2 b-tags HT	3 b-tags	4 b-tags
dilepton 2 jets 3 jets	2 b-tags HT HT	3 b-tags	4 b-tags

Simultaneous fit of all regions to extract signal strength

Н

PANIC 2014

tīH(bb) Background

- Background modelling very important: dominated by $t\bar{t}+b\bar{b}$ and $t\bar{t}+c\bar{c}$
- $t\bar{t}$ modelled using Powheg+Pythia (also compared with Madgraph + Pythia)
 - Both top and $t\bar{t}$ p_T are re-weighted from differential cross section measurement at 7 TeV
 - Also applied to tt+HF
- Both $t\bar{t}+b\bar{b}$ and $t\bar{t}+c\bar{c} \rightarrow 50$ % uncertainty on the normalization
- Top and $t\bar{t}$ p_T reweighting (affecting separately $t\bar{t}$ +light jets and $t\bar{t}$ +HF jets)
- Generator: Madgraph+Pythia vs Powheg+Pythia
- Fragmentation: Poweg+Pythia vs Powheg+Herwig

Stefan Guindon University at Albany, SUNY

PANIC 2014

tīH(bb) Neural Network

- Signal regions: train NN to separate *t*tH from backgrounds
- NN is built from:
 - Event shape variables (centrality)
 - Object pair properties ($\Delta \eta_{jj}$ max)
 - Object kinematics (p_T)
 - Event Kinematics (HT)
- NN in 5j / 3b built to separate $t\bar{t}$ +HF from $t\bar{t}$

Examples of variables with largest separation in SR

Aug 25 2014

Stefan Guindon University at Albany, SUNY

l 9

tīH(bb) Results

- Combination of single lepton and dilepton channels:
- 95% CL observed (expected) limit:
 - 4.1 x SM (2.6 x SM) for mH = 125 GeV
- Best fit signal strength: $\mu(t\bar{t}H) = 1.7 \pm 1.4$

ttH Run I Combination

Aug 25 2014

Stefan Guindon

-2∆ln(L)

4.5

3.5

3

2.5

1.5

0.5

-0.5

2Ē

University at Albany, SUNY

11

12

Top-Yukawa Coupling

- tH production is highly suppressed in SM
 - Much smaller than *t*tH
- In some BSM models Y_t can be negative:
 - Significantly increased tH cross section and BR(H → γγ)
 - Destructive interference becomes constructive
 - Attempt to rule out such hypothesis

• Set limits as a function of $\kappa_t = Y_t/Y_t^{SM}$

- Inclusive Higgs production as a function of strength to SM expectation
- Also correlated to BR(H $\rightarrow \gamma\gamma$)
- All other couplings are set to SM
- Null hypothesis includes SM ttH
- 95% CL lower and upper observed (expected) limits on κt
 - κ_t: > 1.3 and < 8.1 (– 1.2 and + 7.9)

t →cH FCNC

FCNC (flavour changing neutral current)

- Allowed in BSM models
 - Forbidden at tree level + suppressed at higher orders in SM
- t \rightarrow cH: largest branching in 2HDM type III (BR ~10⁻³)
- Measurement of di-photon mass m(γγ)
 - Resonance search with 2 isolated photons

• Event selection:

Events / 4 GeV

- Hadronic W: ≥ 4 jets, ≥1 b-jets
- Leptonic W: 1 lepton, 2 jets, ≥1 b-jets, and m_T^W > 30 GeV
- Reconstructed top mass cuts:
 - 156<Μ(γγj)<191 GeV
 - Hadronic: 130<M(jjj)<210 GeV
 - Leptonic: 135<M(lvj)<205 GeV

• 95% CL observed (expected) limit: BR(t→Hq) < 0.83% (0.53%) and λ_{tcH} < 0.17 (0.14)

Summary and Conclusions

- ATLAS has performed searches of $t\bar{t}H$ for Higgs decays into H \rightarrow bb and H $\rightarrow \gamma\gamma$
- 95% CL observed (expected) limit:
 - *t*t*H*(*bb*) : 4.1 x SM (2.6 x SM)
 - $t\bar{t}H(\gamma\gamma)$: 6.5 × SM (4.9 × SM)
- A *t*t̄H combination yielded a 95% CL observed (expected) limit:
 - 3.9 x SM (2.3 x SM) for $m_H = 125.4 \text{ GeV}$
 - Observed (expected) significance: 1.5 σ (1.0 σ)
- Combination of Run I searches: close to SM sensitivity
 - Multilepton searches will be available in the very near future
- *t*tH observation and Yukawa coupling measurement is one of the priorities for Run II
 - Higher centre-of-mass energy will be largely beneficial for tTH

• HL-LHC with 3 ab⁻¹ Outlook:

- $t\bar{t}H(\gamma\gamma)$ 1+2 lepton expected 8.2 significance
- 95 % CL BR(t \rightarrow Hq): < 1.5 x 10⁻⁴ and λ_{tcH} : < 0.024 rule out some BSM models

Additional Slides

Top-Yukawa Coupling

• Three effects which contribute to limit

PANIC 2014

tīH(bb) Profiling

- Events / 0.1 Events / 0.1 ATLAS Preliminary - Data ATLAS Preliminary - Data tīH (125) norm tīH (125) ⊥tīH (125) ⊥tī+light ttH (125) norm L dt = 20.3 fb⁻¹, \s = 8 TeV L dt = 20.3 fb⁻¹, \s = 8 TeV 100 l tītH (125) Single lepton 100 Single lepton ∃ tī+light ↓ tī+cē ↓ tī+bb ↓ tī+V \geq 6 j, \geq 4 b ≥ 6 j, ≥ 4 b ≡ tī+cc tt+bb 80 80 🗕 non-tł 📒 non-tī ////, Total unc. ////, Total unc. 60 60 40 40 20 20 Data / Pred Data / Pred 1.25 1.25 0.75 0.75 0.5 0.5 -0.8 -0.4 -0.2 0.2 0.4 0.6 -0.6 0 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 NN output NN output Events / 0.2 Events / 0.2 ATLAS Preliminary ATLAS Preliminary - Data - Data 125) ttH (125) norm $L dt = 20.3 \text{ fb}^{-1}$, $\sqrt{s} = 8 \text{ TeV}$; ttH (125) norm L dt = 20.3 fb⁻¹, \s = 8 TeV 25 25 ttH (125) ttH (125) Dilepton Dilepton ∃tī+light ∃ tī+light tt+cc tt+bb \geq 4 j, \geq 4 b ∃tī+cc \geq 4 j, \geq 4 b tī+bb 20 20 $t\bar{t}+V$ ■ tt+V non-tī 🗆 non-tł ////, Total unc. ////, Total unc. 15 15 10 10 Data / Pred Data / Pred 1.25 1.25 0.75 0.5<u>⊢</u> -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 0 0 NN output NN output
- Result of profiling on the signal region of I+jets and dilepton NN
- Reduction in systematic uncertainty

on University at Albany, SUNY

Fitted NPs for H → bb

- NP ranking based on postfit impact on signal strength:
- $t\bar{t}+b\bar{b}$ normalization
- Largest mistag variation
- tt̄+HF : tt̄ p⊤ reweighting
- Change in MC Generator for $t\bar{t}$ p_T reweighting
- *tt*+cc normalization
- *tt*+HF : Madgraph vs Powheg
- Second largest mistag variation
- *tt* cross section

