Parity Violation Inelastic Scattering Experiments at Jlab

Vincent Sulkosky

University of Virginia

Particles and Nuclei International Conference 2014 (PANIC 2014)

August 28th, 2014

Acknowledgement: X. Zheng

Outline

- PVDIS and electron-quark effective couplings
- The 6 GeV PVDIS experiment
- DIS results electron-quark effective VA couplings
- Resonance results duality in EW sector?
- Summary and Perspectives

Parity-Violating Electron Scattering (PVES)

- To study nucleon structure not accessible in the electromagnetic interaction:
 - elastic PVES: nucleon strange form factors;
 "neutron skin" in heavy nucleus
- To test the electroweak Standard Model:
 - Moller E158
 - PVDIS

Accessing C_{1q,2q}

- Need electron beam on hadronic target
- In elastic PVES
 - directly probes C_{1q}, electrons' parity-violating property;
 - quarks' parity-violation is represented by the nucleon axial form factor G_A , and extracting C_{2q} from G_A is model-dependent
- Only in PVDIS, electron probes the quark and PVDIS asymmetry depends on C_{2q} directly.

Formalism for Parity Violation in DIS

$$A_{PV} = \frac{G_F Q^2}{\sqrt{2} \pi \alpha} [a(x) + Y(y)b(x)]$$

$$x \equiv x_{Bjorken} \qquad y \equiv 1 - E'/E$$

$$q_i^+(x) \equiv q_i(x) + \bar{q}_i(x)$$

$$q_i^-(x) \equiv q_i^V(x) \equiv q_i(x) - \bar{q}_i(x)$$

$$a(x) = \frac{1}{2} g_A^e \frac{F_1^{\gamma Z}}{F_1^{\gamma}} = \frac{1}{2} \frac{\sum_i C_{1i} Q_i q_i^+ (x)}{\sum_i Q_i^2 q_i^+ (x)} \qquad b(x) = g_V^e \frac{F_3^{\gamma Z}}{F_1^{\gamma}} = \frac{1}{2} \frac{\sum_i C_{2i} Q_i q_i^- (x)}{\sum_i Q_i^2 q_i^+ (x)}$$

For an isoscalar target
(²H), structure
functions largely
simplifies:

$$a(x) = \frac{3}{10} (2C_{1u} - C_{1d}) \left(1 + \frac{0.6 \, s^+}{u^+ + d^+} \right) \qquad b(x) = \frac{3}{10} (2C_{2u} - C_{2d}) \left(\frac{u_V + d_V}{u^+ + d^+} \right)$$

Formalism for Parity Violation in DIS

$$A_{PV} = \frac{G_F Q^2}{\sqrt{2} \pi \alpha} [a(x) + Y(y)b(x)]$$

$$x \equiv x_{Bjorken} \qquad y \equiv 1 - E'/E$$

$$q_i^+(x) \equiv q_i(x) + \bar{q}_i(x)$$

$$q_i^-(x) \equiv q_i^V(x) \equiv q_i(x) - \bar{q}_i(x)$$

$$a(x) = \frac{1}{2} g_A^e \frac{F_1^{\gamma Z}}{F_1^{\gamma}} = \frac{1}{2} \frac{\sum_i C_{1i} Q_i q_i^+(x)}{\sum_i Q_i^2 q_i^+(x)} \qquad b(x) = g_V^e \frac{F_3^{\gamma Z}}{F_1^{\gamma}} = \frac{1}{2} \frac{\sum_i C_{2i} Q_i q_i^-(x)}{\sum_i Q_i^2 q_i^+(x)}$$
For an isoscalar target
(²H), structure
functions largely
simplifies:
$$a(x) = \frac{3}{10} (2C_{1u} - C_{1d}) \left(1 + \frac{0.6 s^+}{u^+ + d^+} \right) \qquad b(x) = \frac{3}{10} (2C_{2u} - C_{2d}) \left(\frac{u_V^* + d_V}{u^+ + d^+} \right)$$
If neglecting sea quarks, asymmetry is no
longer sensitive to PDFs \rightarrow "static limit"

PVDIS at 6 GeV (JLab E08-011)

- Ran in Oct-Dec 2009, 100uA, 90% polarized electron beam, 20-cm liquid deuterium target
- Two High Resolution Spectrometers (HRS pair) detected electrons in the inclusive mode at DIS Q²=1.1 and 1.9 GeV², and five resonance kinematics.
- Scaler-based fast counting DAQ specifically built for the 500kHz DIS rates w/ 10⁴ pion rejection.

Scaler-Based Counting DAQ with online (hardware) PID

- DIS region, pions contaminate, can't use integrating DAQ.
- High event rate (~500KHz), exceeds Hall A regular DAQ's Limit (4kHz)

PID Performance – Single Run

Affects measured asymmetry (Q²) if it varies over the acceptance or if there are "holes"

Combined with Cherenkov, pion contamination $< 2x10^{-4}$ Detector efficiencies extracted from VDC-on runs, taken daily

From Measured to Physics Asymmetry

 \bullet correcting for background f_i with asymmetry A_i:

From Measured to Physics Asymmetry

 $A_{Q^{2}=1.901, x=0.295}^{raw} = -140.30 \pm 10.43 \pm 0.16 \ ppm(LHRS)$ $A_{Q^{2}=1.901, x=0.295}^{raw} = -139.84 \pm 6.58 \pm 0.46 \ ppm(RHRS)$

D.	80.20	00 7207	•		
1 6	09.29	00.1370	Λf	+0.006%	+0.003%
ΔP_b	1.19%	$\pm 1.50\%$	$\Delta J_{\pi^{-}}$	10.107	T0:00010
$1 + f_{denol}$	1(021	$\Delta f_{ m pair}$	$\pm 0.4\%$	$\pm 0.2\%$
(cyct)	1.0	10-4	$\Delta \bar{f}_{A_m}$	$\pm 2.5\%$	$\pm 2.5\%$
(Syst.)	< .	10 -	ΛO^2	$\pm 0.64\%$	$\pm 0.65\%$
$1 + f_{A1}$	0.9999	0.9999	ΔQ	10.0470	10.0070
(avat)	10.0094	10.0094	rescatt bg	$\ll 0.2\%$	$\ll 0.2\%$
(Syst.)	± 0.0024	± 0.0024	target impurity	$\pm 0.06\%$	$\pm 0.06\%$
$1 + f_{\rm dt}$	1.0049	1.0093	target impurity	10.0070	10.0070
(evet)	± 0.0004	± 0.0012			Asymmetr
(Syst.)	± 0.0004	± 0.0013	(phys (nom)	1/	20.00
$1 + f_{\rm rc}$	1.	019	A ¹ ^o (ppm)	-10	00.00
(cruct)	1.0	004	(stat.)	± 0	5.39
(Syst.)	±0	.004	(evet)	1.4	0.10
$1 + f_{\gamma\gamma}$ box	0.997	_	(Syst.)	±ί	3.12
$1 + \overline{f}$		1.005	(total)	+'	7.12
$1 + J\gamma\gamma,\gamma$ Zboxes	—	1.005			
(syst.)	± 0.003	± 0.005			
(Syst.)	± 0.000	± 0.000	L		

Compare to Standard Model?

$$A_{Q^{2}=1.085, x=0.241}^{phys} = -91.10 \pm 3.11 \pm 2.97 \ ppm$$

$$A^{SM} = (1.156 \times 10^{-4}) \Big[(2C_{1u} - C_{1d}) + 0.348 (2C_{2u} - C_{2d}) \Big] = -87.7 \ ppm$$
uncertainty due to PDF: 0.5% 5%
uncertainty due to HT: 0.5%/Q^{2},
0.7ppm

$$A_{Q^{2}=1.901, x=0.295}^{phys} = -160.80 \pm 6.39 \pm 3.12 \ ppm$$

$$A^{SM} = (2.022 \times 10^{-4}) \left[(2C_{1u} - C_{1d}) + 0.594 (2C_{2u} - C_{2d}) \right] = -158.9 \ ppm$$
uncertainty due to PDF: 0.5% 5%
uncertainty due to HT: 0.5%/Q^{2}, 1.2ppm

Previous data: Elastic PVES + APV

Add JLab PVDIS

Best Fit

Best Fit

0

1

Quarks are not ambidextrous

By separately scattering right- and left-handed electrons off quarks in a deuterium target, researchers have improved, by about a factor of five, on a classic result of mirror-symmetry breaking from 35 years ago. SEE LETTER P.67

BSM Mass Limit on e-q VA contact interaction

2

Resonance Background Data Coverage

Four settings covered the full resonance region;

 "Grouping" of lead glass blocks allowed a reasonable study of the W-dependence;

Resonance PV Asymmetry Results

A: Matsui, Sato, Lee, PRC72,025204(2005)

B: Gorchtein, Horowitz, Ramsey-Musolf, PRC84,015502(2011)

C: Hall, Blunden, Melnitchouk, Thomas, Young, PRD88, 013011 (2013)

Wang et al., PRL 111, 082501 (2013) 2

SoLID Physics topics:

- PVDIS deuteron (180 days) – C_2 , $sin^2\theta_w$, CSV, diquarks,
- PVDIS proton (90 days) d/u
 PV with ³He (LOI)
- SIDIS

9 J/ψ

RGINT

[2 g^{eu} - g^{ed}]_{AV}

Summary and Perspectives

The 6 GeV PVDIS from JLab:

- Improved world data on the eq VA effective coupling term 2C_{2u}-C_{2d} by factor of five; agrees with the SM; and showed 2C_{2u}-C_{2d} is 2σ from zero – indicating a nonzero contribution to PVDIS asymmetry due to quark's chirality preference; BSM mass limits complimentary to collider experiments.
- Resonance PV asymmetries seem to indicate duality in the electroweak observables for the first time.

"New construction" experiments at JLab 12 GeV:

 PVDIS @ 11 GeV (SoLID) will improve C_{2q} by another order of magnitude.

Subedi et al, NIM-A 724, 90 (2013);Wang et al., PRL 111, 082501 (2013);Wang et al., Nature 506, no. 7486, 67 (2014);Iong paper draft available.

Parity Violation in the Standard Model

In weak interaction, all elementary fermions behave differently under parity transformation

They have a preferred chiral state when coupling to the

Parity Violation in the Standard Model

Unlike electric charge, need two charges (couplings) for weak interaction: g_L, g_R

or "vector" and "axial" weak charges:~ (g_L+g_R) $g_A~(g_L-g_R)$

fermions	$g_A^f = I_3$	$g_V^f = I_3 - 2Q\sin^2\theta_W$
$\nu_{_{e}}, \nu_{_{\mu}}$	$\frac{1}{2}$	$\frac{1}{2}$
e-, μ-	$-\frac{1}{2}$	$-\frac{1}{2}+2\sin^2\theta_W$
И, С	$\frac{1}{2}$	$\frac{1}{2} - \frac{4}{3}\sin^2\theta_W$
d, s	$-\frac{1}{2}$	$-\frac{1}{2}+\frac{2}{3}\sin^2\theta_W$

Running of Sin² \mathbf{q}_{W}

Parity Violation in the Standard Model

Unlike electric charge, need two charges (couplings) for weak interaction: g_L, g_R

or "vector" and "axial" weak charges: $(g_L+g_R) = g_A \sim (g_L-g_R)$

PVES asymmetry comes from V(e)xA(targ) and g_R) A(e)xV(targ)

Effective Couplings and New Contact Interactions

Unlike electric charge, need two charges (couplings) for weak interaction: g_L, g_R

or "vector" and "axial" weak charges:~ (g_L+g_R) $g_A~(g_L-g_R)$

-V-A

-V-A

PVDIS asymmetry comes from: $C_{L} \equiv 20^{\circ} 0^{\circ} C_{L} = \frac{g_{R}}{20^{\circ}}$

V-A

"electron-quark effective couplings"

$$C_{1q} = g_{AV}^{e q}, C_{2q} = g_{VA}^{e q}$$

Erler&Su, Prog. Part. Nucl. Phys. 71, 119 (2013)

E08-011 Kinematics

Kine#	HRS	E_b (GeV)	$\theta_0(\text{deg})$	E'_0 (GeV)	$R_{\rm e}(\rm kHz)$	R_{π^-}/R_e
DIS#1	Left & Right	6.067	12.9	3.66	≈210	≈0.5
DIS#2	Left & Right	6.067	20.0	2.63	≈18	≈3.3
RES I	Left	4.867	12.9	4.0	≈300	< ≈0.25
RES II	Right	4.867	12.9	3.55	≈600	< ≈0.25
RES III	Left	4.867	12.9	3.1	≈400	< ≈0.4
RES IV	Left	6.067	15	3.66	≈80	< ≈0.6
RES V	Left	6.067	14	3.66	≈130	< ≈0.7

Data Quality

(pair-wise asymmetry pull plots):

$$pull = \frac{A_i - \langle A \rangle}{\Delta A_i}$$

From Measured to Physics Asymmetry

 $A_{Q^2=1.085, x=0.241}^{raw} = -78.45 \pm 2.68 \pm 0.07 \, ppm$

P_b	88.18%		
ΔP_{b}	$\pm 1.76\%$	$\Delta f_{\pi^{-}}$	$\pm 0.009\%$
$1 + f_{depol}$	1.0010	$\Delta f_{ m pair}$	$\pm 0.04\%$
(syst)	$< 10^{-4}$	$\Delta \bar{f}_{A_n}$	$\pm 2.5\%$
1 + f.,	0.0000	ΔQ^2	$\pm 0.85\%$
I + JAI	0.9999	rescatt bg	$\ll 0.2\%$
(Syst.)	± 0.0024	target impurity	$\pm 0.06\%$
$1 \pm Jdt$	1.0147		ı
(syst.)	± 0.0009		01.10
$\frac{1 + f_{dt}}{(syst.)}$	± 0.0009 1.015	A ^{phys} (ppm)	-91.10
$\frac{1 + f_{dt}}{(syst.)}$ $\frac{1 + f_{rc}}{(syst.)}$	± 0.0009 1.015 ± 0.020	A ^{phys} (ppm) (stat.)	-91.10 ± 3.11
$1 + f_{dt}$ (syst.) $1 + f_{rc}$ (syst.) $1 + f_{rc}$	± 0.0009 1.015 ± 0.020	A ^{phys} (ppm) (stat.) (syst.)	$-91.10 \\ \pm 3.11 \\ \pm 2.97$
$\frac{1 + f_{dt}}{(syst.)}$ $\frac{1 + f_{rc}}{(syst.)}$ $\frac{1 + f_{\gamma\gamma box}}{1 + f_{\gamma\gamma box}}$	$ \begin{array}{r} \pm 0.0009 \\ 1.015 \\ \pm 0.020 \\ 0.998 \end{array} $	A ^{phys} (ppm) (stat.) (syst.) (total)	$-91.10 \\ \pm 3.11 \\ \pm 2.97 \\ \pm 4.30$
$ \frac{1 + f_{dt}}{(syst.)} $ $ \frac{1 + f_{rc}}{(syst.)} $ $ \frac{1 + f_{\gamma\gamma box}}{1 + f_{\gamma\gamma,\gamma Zboxes}} $	$\begin{array}{r} 1.0147 \\ \pm 0.0009 \\ 1.015 \\ \pm 0.020 \\ 0.998 \\ - \end{array}$	A ^{phys} (ppm) (stat.) (syst.) (total)	$-91.10 \\ \pm 3.11 \\ \pm 2.97 \\ \pm 4.30$

SLAC E122 vs. JLab E08-011

	SLAC E122 (1978)	JLab E08-011 (2009)
Beam	37%, 16.2-22.2 GeV	90%, 6.0674 GeV, 100uA
Target	30-cm LD2, LH2	20-cm LD2
Spectrometer	4°	12.9° and 20°
Q ²	1-1.9 GeV ²	1.1 and 1.9 GeV ²
Data collection	Integrating gas Cerenkov and lead glass detectors, (two highest energies on independently $A/O^2 = (-9.5 \pm 1.6) \times 10^{-5}$ (Ge	Counting DAQ using both GC and lead glass for PID at the hardware y level
$sin^2\theta_w = 0.20 \pm 0.$ results03	$\pm 0.86 \times 10^{-5} (\text{stat}) \pm 5\% (\text{Pb})$ $\pm 3.3\% (\text{beam}) \pm 2\% (\pi$ contamination) $\pm 3\% (\text{radiative corrections})$ $A/Q^2 = (-9.7 \pm 2.7) \times 10^{-5} (\text{Ge})$	±(3-4)%(stat) ±syst.

DAQ Deadtime Correction

Deadtime correction to asymmetry: $A_{measured} = A_{nhvs} (1 - deadtime loss)$

Deadtime Decomposition:

- Group Deadtime: proportional to group rate; narrow/wide.
- Veto Deadtime: T1/GC rate; the same for all groups.
- ➡ Final OR.
- Overall Deadtime: Veto DT + Group DT + Final OR DT

36

Pion Asymmetries

HRS, Kinematics	Left DIS#1	Left DIS#2	Right DIS#2			
narrow path						
$A_{\pi}^{\text{meas}} \pm \Delta A_{\pi}^{\text{meas}}$ (total) (ppm)	-48.8 ± 14.0	-22.0 ± 21.4	-20.3 ± 6.0			
$A_{e,\text{dit}}^{\text{bc,raw}} \pm A_{e,\text{dit}}^{\text{bc,raw}}$ (stat.) (ppm)	-78.5 ± 2.7	-140.3 ± 10.4	-139.8 ± 6.6			
$f_{\pi/e} \pm \Delta f_{\pi/e} \text{ (total)} (\times 10^{-4})$	(1.07 ± 0.24)	(1.97 ± 0.18)	(1.30 ± 0.10)			
$\left(\frac{\Delta A_e}{A_e}\right)_{\pi^-,n}$	$0.89 imes 10^{-4}$	$0.63 imes 10^{-4}$	$0.27 imes 10^{-4}$			
wide path						
$A_{\pi}^{\text{meas}} \pm \Delta A_{\pi}^{\text{meas}}$ (total) (ppm)	-41.3 ± 12.8	-23.7 ± 21.4	-20.3 ± 6.0			
$A_{e,\text{dit}}^{\text{bc,raw}} \pm \Delta A_{e,\text{dit}}^{\text{bc,raw}}$ (stat.) (ppm)	-78.3 ± 2.7	-140.2 ± 10.4	-140.9 ± 6.6			
$f_{\pi/e} \pm \Delta f_{\pi/e}$ (total) (×10 ⁻⁴)	(0.72 ± 0.22)	(1.64 ± 0.17)	(0.92 ± 0.13)			
$\left(\frac{\Delta A_e}{A_e}\right)_{\pi^-,w}$	$0.54 imes 10^{-4}$	$0.55 imes 10^{-4}$	$0.21 imes 10^{-4}$			

Pair Production Background

- Took reversed-polarity runs, mostly to determine e+/eratio. Positron asymmetry from those runs have very large error;
- Assumed positron asymmetry to be similar to πasymmetry;
- Effect on the measurement is about 10 times larger than π background.

Estimation of HT on the a₃ term

We could use HT results on $F_{3}^{\gamma Z}$ from neutrino data in 0710.0124 (hep-ph) to correct the a_{3} term:

