

Results on heavy-flavour production in pp, p-Pb and Pb-Pb collisions with ALICE at the LHC

Grazia Luparello for the ALICE Collaboration University of Trieste and INFN Trieste

Outline

Measurements in the central barrel

(mid-rapidity region)

Measurement in the muon spectrometer

(forward/backward rapidity)

- Physics motivations
- Open heavy-flavour measurements with ALICE
 - Heavy-flavour decay electrons
 - D mesons
 - Heavy-flavour decay muons

Main results:

- > pp collisions @ √s = 7 TeV
- > p-Pb collisions @ $\sqrt{s_{NN}}$ = 5.02 TeV
- > Pb-Pb collisions @ $√s_{NN=}$ 2.76 TeV

Motivations: why open heavy flavours?

ALIC

- HF in pp collisions:
 - > Test of pQCD-based predictions for production cross sections
 - > Study the effect of multi-parton interactions on the heavy-flavour sector
 - Reference for p-Pb and Pb-Pb measurements

Motivations: why open heavy flavours?

- > HF in pp collisions:
- > Test of pQCD-based predictions for production cross sections
- Study the effect of multi-parton interactions on the heavy-flavour sector
- Reference for p-Pb and Pb-Pb measurements
- > HF in p-Pb collisions:
 - Control experiment for Pb-Pb measurement
 - Address cold-nuclear-matter effects
 - Shadowing and gluon saturation
 K.J.Eskola et al., JHEP 0904(2009)65;
 H.Fuji & K.Watanabe, NPA 915(2013)1
 - Shadowing and gluon Saturation H.Fuji & K.Watanabe, NPA 915(2013)1
 Energy loss in cold nuclear matter I.Vitev at al., PRC 75(2007)064906
 - > k_{τ} -broadening X.N.Wang ,PRC 61(2000)064910

Motivations: why open heavy flavours?

- HF in pp collisions:
 - > Test of pQCD-based predictions for production cross sections
 - Study the effect of multi-parton interactions on the heavy-flavour sector
 - Reference for p-Pb and Pb-Pb measurements
- > HF in p-Pb collisions:
 - Control experiment for Pb-Pb measurement
 - Address cold-nuclear-matter effects
 - Shadowing and gluon saturation
 K.J.Eskola et al., JHEP 0904(2009)65;
 H.Fuji & K.Watanabe, NPA 915(2013)1
 - Shadowing and gluon saturation H.Fuji & K.Watanabe, NPA 915(2013)1
 Energy loss in cold nuclear matter I.Vitev at al., PRC 75(2007)064906
 - > $k_{\rm T}$ -broadening X.N.Wang ,PRC 61(2000)064910
- HF in Pb-Pb collisions:
 - Study of the interaction of heavy quarks with the medium

Because of their large mass, heavy-quarks are produced at the initial stage of the collisions in hard partonic scatterings $\tau_{form} \sim \frac{1}{2} m_Q \sim 0.02-0.1 \text{ fm/c} << \tau_{QGP}$ Flavour is conserved in strong interactions \rightarrow They are transported through the full system evolution

Heavy-flavours in heavy-ion collisions

> Study HF interaction with the medium via:

Parton energy loss

Depend on: colour charge, quark mass, path length and medium density

$$\Delta E_{gluons} > \Delta E_{light} > \Delta E_{charm} > \Delta E_{beauty}$$

$$R_{AA}(\pi) < R_{AA}(D) < R_{AA}(B)$$

Caveats: different shapes of the p_{τ} distributions of light and heavy flavours in pp collisions, different fragmentation functions, role of soft particle production for π at low p_{τ}

Nuclear modification factor: R_{AA} =

$$=\frac{dN_{AA}/dp_{T}}{\langle N_{coll}\rangle dN_{pp}/dp_{T}}$$

Heavy-flavours in heavy-ion collisions

ALICE

> Study HF interaction with the medium via:

Parton energy loss

Depend on: colour charge, quark mass, path length and medium density

$$\Delta E_{gluons} > \Delta E_{light} > \Delta E_{charm} > \Delta E_{beauty}$$

$$R_{AA}(\pi) < R_{AA}(D) < R_{AA}(B)$$

Caveats: different shapes of the p_{τ} distributions of light and heavy flavours in pp collisions, different fragmentation functions, role of soft particle production for π at low p_{τ}

Nuclear modification factor: $R_{AA} = \frac{dN_{AA}/dp_T}{\langle N_{coll} \rangle dN_{pp}/dp_T}$

Collectivity

Initial spatial anisotropy \rightarrow particle momentum anisotropy Low p_T : degree of thermalization of heavy quarks in QGP High p_T : path length dependence of energy loss

$$\frac{dN}{d\varphi} = \frac{N_0}{2\pi} (1 + 2v_1 \cos(\varphi - \Psi_{RP}) + 2v_2 \cos[2(\varphi - \Psi_{RP})] + ...)$$

Heavy-flavour decay electrons

D mesons

PANIC 2014 - G. Luparello

Heavy-flavour decay muons

Results in pp collisions @ $\sqrt{s} = 7$ TeV

- > Test of pQCD-based predictions for production cross sections
- Study the effect of multi-parton interactions on the heavy-flavour sector
- Reference for p-Pb and Pb-Pb measurements

Pp @ √s = 7 TeV Open HF cross section at √s=7 TeV

> p_{T} -differential cross section in all channels

25/08/2014

PANIC 2014 - G. Luparello

Pp @ √s = 7 TeV Multiplicity dependence of HF production

- Investigate the role of Multi Parton Interactions in heavy-flavour production
- > Self-normalized D-meson yields vs. charged particle multiplicity

- > Self-normalized yields of all D-meson species increase with charged particle multiplicity without a significant p_{τ} dependence (within uncertainties)
- Charm production connected with stronger hadronic activity and affected by MPI

Results in p-Pb collisions @ $\sqrt{s_{NN}}$ = 5.02 TeV

- Control experiment for Pb-Pb measurement
- > Address cold-nuclear-matter effects

uncertainties

> Small cold nuclear matter effects in the measured p_{τ} range

Good agreement with theoretical calculations

FONLL pQCD calculations with EPS09 PDF parameterizations of shadowing (JHEP 006(2001)0103; K.Eskola et al., JHEP 04 (2009) 065)

CF

p-Pb @ √s_{NN} = 5.02 TeV HF decay e[±] nuclear modification factor

- *R*_{pPb} of **HF decay electrons (charm & beauty)** compatible with unity within uncertainties
- > Small cold nuclear matter effects in the measured p_{τ} range

Good agreement with theoretical calculations

- FONLL pQCD calculations with EPS09 PDF parameterizations of shadowing (JHEP 006(2001)0103; K.Eskola et al., JHEP 04 (2009) 065)
- R_{pPb} of electrons from beauty-hadron decays is also compatible with unity within uncertainties

p-Pb @ √s_{NN} = 5.02 TeV D meson nuclear modification factor

- > R_{pPb} of **D mesons** compatible with unity within uncertainty
- > Small cold nuclear matter effects in the measured p_{T} range

> R_{pPb} of **D mesons** compatible with unity within uncertainty

> Small cold nuclear matter effects in the measured p_{T} range

- Good agreement with theoretical calculations
 - Color Glass Condensate (CGC) calculations (H.Fujii,K.Watanabe arXiv: 1308.1258)
 - MNR pQCD calculations with EPS09 PDF parameterizations of shadowing (M.Mangano et al., Nucl.Phys.B 373(1992)295; K.Eskola et al., JHEP 04467(2009)065)
 - Energy loss in cold nuclear matter (Vitev: PRC 75(2007)064906)

- > R_{pPb} of **HF decay µ** consistent with unity at forward rapidity (p-going direction)
- > R_{pPb}^{T} of **HF decay µ** slightly larger than unity in the range 2 < p_T < 4 GeV/c at backward rapidity (Pb-going direction)
- Described by MNR pQCD calculations with EPS09 PDF parameterizations of shadowing (M.Mangano et al., Nucl.Phys.B 373(1992)295; K.Eskola et al., JHEP 04467(2009)065)
- > Small cold nuclear matter effects in the measured p_{T} range

D mesons, e.g. D^o

 $\frac{d^2 N/dydp_T}{\langle d^2 N/dydp_T \rangle} = \frac{Y^{mult}/(\epsilon^{mult} \times N_{event}^{mult})}{Y^{tot}/(\epsilon^{tot} \times N_{event}^{tot}/\epsilon^{trigger})}$

TCF

> D-meson self-normalized yields increase with charged particles multiplicity without a significant p_{τ} dependence (within uncertainties)

- > D-meson self-normalized yields increase with charged particles multiplicity without a significant p_{τ} dependence (within uncertainties)
- Similar trend observed in pp and p-Pb collisions
 - High-multiplicity pp collisions are mainly from MPIs, while high-multiplicity p-Pb collisions are also due to a larger number of binary nucleon-nucleon collisions

→ Prometer Prometer Prometer Street Prometer Prometer Street Prometer Street Prometer Prometer Prometer Prometer Street Prometer Street Prometer P

Investigate a possible multiplicity dependent modification of the p_T spectra in p-Pb wrt pp collisions

$$Q_{pPb}^{mult}(p_T) = \frac{\left(dN_{pPb}^{mult}/dp_T\right)_i}{\langle N_{coll} \rangle_i dN_{pp}/dp_T}$$

- Event classes defined on the basis of the energy of the Pb-spectator neutrons deposited in the ZDC (ZN)
- <*N*_{coll}> in a ZN energy class obtained by scaling the minimum-bias value

$$\langle N_{coll} \rangle_i = \langle N_{coll} \rangle_{MB} \left(\frac{\langle dN/d\eta \rangle_i}{\langle dN/d\eta \rangle_{MB}} \right)_{-1 < \eta < 0} - 1$$

P-Pb @ √s_{NN} = 5.02 TeV Multiplicity dependent nuclear modification factor

> Investigate a possible multiplicity dependent modification of the p_T spectra in p-Pb wrt pp collisions

$$Q_{pPb}^{mult}(p_T) = \frac{\left(dN_{pPb}^{mult} / dp_T \right)_i}{\langle N_{coll} \rangle_i dN_{pp} / dp_T}$$

- Event classes defined on the basis of the energy of the Pb-spectator neutrons deposited in the ZDC (ZN)
- <*N*_{coll}> in a ZN energy class obtained by scaling the minimum-bias value

$$\langle N_{coll} \rangle_i = \langle N_{coll} \rangle_{MB} \left(\frac{\langle dN/d\eta \rangle_i}{\langle dN/d\eta \rangle_{MB}} \right)_{-1 < \eta < 0} - 1$$

- Q_{pPb} does not show a multiplicity dependence of the D-meson production in p-Pb relative to pp collisions
- Similar for charged hadrons

TCF

- Study of the angular correlation between an electron from heavy-flavour hadron decay (trigger particle) and a charged hadron (associated particle)
- Search for "double-ridge" structure as observed in the light-flavour sector

p-Pb, $\sin s_{NN} = 5.02$ TeV, 0-20% (V0A multiplicity class) (1 / N_e) (dN_{eh} / dΔφ) (rad⁻¹) p-Pb, \s_{NN} = 5.02 TeV p-Pb, V0A Multiplicity class: 0 - 20 % (e from c,b)-h correlation (e from c,b)-h correlation -Pb. V0A Multiplicity class: 20 - 60 % V0A Multiplicity class: 60 - 100 % $1.0 < p_{-}^{e} < 2.0 \text{ GeV/c}$ $1.0 < p_{-}^{e} < 2.0 \text{ GeV/c}$ st. on ped. estimation Syst. from secondary particles 0.5 < p^h < 2.0 GeV/c $0.5 < p_{-}^{h} < 2.0 \text{ GeV/c}$ |η| < 0.9, |Δη| < 1.6 s = 7 TeVPERFORMANCE pp. stat. uncertainty 16/10/2013 ⁹0.45 1.5 Ν^{eh}(Δη, Λη) Ν Global normalization uncertainty = 0.06 rad 0.5 PRELIMINAR Lo (rad) $[N_{eh}(\Delta\eta,\Delta\phi) / N_{c}]$ $\left[\frac{N_{eh}(\Delta\eta,\Delta\phi)}{N_{eh}(0,0)} \right]_{\text{BLI-PERF-63002}} + \frac{N_{eh}(0,0)}{N_{eh}(0,0)}$ $\Delta \phi$ (rad) ALI-PREL-61949 ^JMixed

- > Low- p_{T} trigger particle (1< p_{T}^{e} < 2 GeV/c): enhancement in the near and away side peaks for the highest multiplicity events (0-20%)
- > Intermediate- p_{τ} trigger particle (2< p_{τ}^{e} < 6 GeV/c): correlation distributions in all multiplicity classes compatible with each other and with those measured in pp collisions at $\sqrt{s} = 7$ TeV

PANIC 2014 - G. Luparello

Phys. Lett. B 719 (2013)

- Difference of highest multiplicity event class (0-20%) and lowest multiplicity event class (60-100%) to remove correlations due to jets
- > Double-ridge structure emerges also for HF decay e- h correlations
- Do the responsible mechanisms (CGC, hydrodynamics) affect both light and heavy flavours?

CGC: Bozek et al., PLB (2013) 1557; Hydro: Dusling et al., PRD87 (2013) 094034

Results in Pb-Pb collisions @ $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

Study of the interaction of heavy quarks with the medium

- > Heavy-flavour production is suppressed at high p_{τ} in the most central Pb-Pb collisions with respect to the binary scaled pp collisions
- > $R_{pA} \sim 1 \rightarrow$ the suppression is a final state effect due to hot and dense medium
 - > Similar HF decay e (|y|<0.6) and HF decay μ (2.5<y<4.0) R_{AA} in 0-10%
 - > Also compatible with D-meson R_{AA} (|y|<0.5) in 0-7.5% considering the semileptonic decay kinematics ($p_{T}^{e} \sim 0.5 p_{T}^{B}$ at high p_{T})
- Open heavy-flavour production is affected by partonic energy loss in the most central Pb-Pb collisions

- > R_{AA} of electrons from beauty hadron decays in 0-20% central Pb-Pb collisions
- Analysis based on the study of the electron impact parameter distribution
- > First measurement indicates $R_{AA} < 1$ for $p_T > 3$ GeV/c
- > Hint for a suppression of beauty decay electrons with p_{T} > 3 GeV/c in central Pb-Pb collisions

- > Different shapes of the parton p_{τ} distributions
- > Different fragmentation functions
- > Soft production mechanism for low- $p_{T}\pi$

M.Djordjevic, arXiv:1307.4098 Wicks, Horowitz, Djordjevic, Nucl. Phys. A 872 (2011) 265

> Positive open heavy-flavour v_2 in Pb-Pb semi-central collisions

- > HF decay electrons, >3 σ effect for 2 < p_{T} < 3 GeV/c
- > Similar v_2 values for HF decay μ and HF decay e in different rapidity regions
- > D mesons, 5.7 σ effect for 2 < p_{T} < 6 GeV/c
- > Open heavy-flavour v_2 is similar to that of charged particles

Pb-Pb @ √s_{NN} = 2.76 TeV Azimuthal anisotropy: centrality dependence

25/08/2014

PANIC 2014 - G. Luparello

- > Results from different observables (p_{T} spectra, R_{AA} , azimuthal anisotropy) compared to theory can constrain the energy loss models
- > The simultaneous description of open heavy-flavour R_{AA} and v_2 is challenging

TAMU elastic: arXiv:1401.3817; Djordjevic: arXiv:1307.4098; Cao, Qin, Bass: PRC 88 (2013) 044907; WHDG rad+coll: Nucl. Phys. A 872 (2011) 265; MC@sHQ+EPOS: PRC 89 (2014) 014905; Vitev, rad+dissoc: PRC 80 (2009) 054902; POWLANG: JPG 38 (2011) 124144; BAMPS: PLB 717 (2012) 430 CF

Conclusions

pp collisions

ALICE

- > Open heavy-flavour production is well described by pQCD calculations
- D-meson yields increase with charged-particle multiplicity: the pp trend suggests that MPI affect hard momentum scale relevant for heavy-flavour production

p-Pb collisions

- > Indication of small cold nuclear matter effects ($R_{pPb} \sim 1$ in the measured p_T range at mid and forward rapidity and at $p_T > 4$ GeV/c at backward rapidity)
- > Data described within uncertainties by different models including initial-state effects
- > No multiplicity dependent modification of the p_{T} distribution of D mesons in p-Pb collisions with respect to the binary scaled pp collisions is observed
- > Double-ridge structure observed in HF e- h correlations. Same origin as for light flavours?

Pb-Pb collisions

- Heavy-flavour production is suppressed at high p_{T} in the most central Pb-Pb collisions with respect to the binary scaled pp collisions
- > The suppression is due to final-state effects due to parton energy loss in the medium
- Consistent with expected mass ordering
- > v_2 > 0 suggests that charm quarks participate in the system collective motion

Further progresses require more statistics

- Higher statistics at higher energies expected for Run 2 (beyond 2015)
- > ALICE Upgrade (2018): faster readout and improved tracking and vertexing resolution. High precision measurements of R_{AA} and v_2 for several HF species and HF baryons will become accessible in Pb-Pb collisions

Back up slides

Electron identification

Identification with TPC, TOF and EMCAL

- Background subtraction methods
 - MC cocktail of relevant background sources: Photon conversions, Dalitz decay of π^0 and η and light mesons, non-photonic sources
 - e+e- invariant mass method: Dalitz decay and photon conversion measured via invariant mass selection and subtracted statistically

25/08/2014

ALI-PERF-53023

۶

PANIC 2014 - G. Luparello

ALI-PERF-51499

D meson reconstruction

- D flight line_ D'reconstructed momentum d_0^K and PID in TPC and TOF K primary vertex secondary vertex d impact parameters ~100 µ m 300 do ro resolution (µm) _{≈0}1800 Men 1600 Men 1400 0 Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$, 102M min. bias ev. 250 $D^{*+} \rightarrow D^0 \pi^+$ PERFORMANCE and charge conj. 09/07/2013 200 < p_ < 24 GeV/c 1200 Entries/ 1000 • $pp \ s = 7 \text{ TeV}$ 07/07/2013 ■ p-Pb\ s_{NN} = 5.02 TeV 150 Pb-Pb\ s_{NN} = 2.76 TeV $\mu = (145.45 \pm 0.01) \text{ MeV/c}^2$ 800 $\sigma = (0.55 \pm 0.01) \text{ MeV/c}^2$ 100 600 400 Significance (3 σ) 44.0 \pm 0.8 50 S (3o) 4299 ± 107 200 S/B (3o) 0.8227 [includes primary vertex resolution] 0.140 0.145 0.15 0.155 10^{-1} p_{T}^{10} (GeV/c) $M(K\pi\pi) - M(K\pi) (GeV/c^2)$
- Invariant mass analysis based on displaced secondary vertices, selected with topological cuts

Muon reconstruction

- Muons defined as matched tracks with tracklet in the trigger chambers
- Cut *p* vs. DCA \rightarrow reject tracks from beam-gas interactions
- Subtraction of background from primary π^{\pm} and K^{\pm} decays.

HF cross section at $\sqrt{s}=2.76$ TeV

• p_{T} -differential cross section in all channels

- pQCD-based calculations (FONLL, GM-VFNS, k_{τ} factorization) compatible with data
- HF decay μ cross section used as reference for Pb-Pb at the same energy
- For other channels a √s extrapolations based on pQCD calculations is used R.Averbeck et al.,arXiv:1107.3243

FONLL:J<u>HEP1210(2012)137; GM--VFNS: Eur.Phys.JC72(2012); k_r factorization: arXiv:1301.3033</u>

PANIC 2014 - G. Luparello

CF

Beauty hadron decay electrons

- Exploit long lifetime of beauty hadrons ($c\tau \sim 500 \ \mu m$)
 - Electrons from beauty hadrons displaced from the primary vertex -> wide impact parameter, d₀ distribution
 - Impact parameter cut to select beauty decay electrons
 - Remaining background subtracted via simulations based on measured π and D-meson cross sections

Q_{pPb} in multiplicity classes in p-Pb collisions

Residual bias when using the VZERO detector to define the multiplicity classes

Multiplicity dependence: comparison with Pb-Pb

- Trend reflects evolution of $\mathsf{N}_{_{\text{coll}}}$ and $\mathsf{R}_{_{\text{AA}}}$ with centrality
- Caveat: comparing pp with Pb-Pb collisions: highest multiplicity bin corresponds to 10% of the total cross section in Pb-Pb but only 1% in pp collisions

ICE

Multiplicity dependence: comparison with J/psi

Similar increase of the relative J/ψ (inclusive) and D-meson (prompt) yields with the relative charged-particle multiplicity in pp collisions, whereas in p-Pb collisions D-meson relative yields increase faster than the J/ψ ones.

- Caveat: different rapidity and p_{τ} intervals in these measurements.
- High-multiplicity pp collisions are mainly from MPIs, while high-multiplicity p-Pb collisions are also due to a larger number of binary collisions.

 $\mathsf{D}_{\mathsf{s}}\mathsf{R}_{\mathsf{AA}}$

PANIC 2014 - G. Luparello

Heavy-flavour e - h correlations

• Intermediate p_{T} trigger particle

D meson R_{AA} compared with π (and models)

D meson R_{AA} compared with non-prompt J/ ψ

- BAMPS: collisional energy loss in an expanding medium.
- WHDG: collisional and radiative energy loss in an anisotropic medium.
- Vitev et al.: radiative energy loss
 + D meson in-medium formation and dissociation.

BAMPS: JPG 38 (2011)124152
 WHDG: Nucl. Phys. A 784 (2007) 426
 Vitev et al.: PRC 80 (2009) 054902