

Generic Detector Developments for future facilities

Ties Behnke, DESY

Content

- General trends
- Position sensitive detectors
- Energy Measurements
- Data Transfer
- Summary/ Conclusion

Not discussed here:

- "approved" upgrades of LHC experiment and other experiments
- Probably many other exciting developments

PANIC 2014

Future Facilities

FAIR: Facility for Antiprotons and Ions Research, under construction

CTA: Cerenkov Telescope Array

Precision physics, rare processes high data rates

PANIC 2014

Future Experiments

Plus many other experiments small and large

PANIC 2014

Precision

Precision for individual parameters

example: pixel detectors with very small pixels

Precision for the overall event reconstruction

Complex detectors, feature extraction, topological detail

PANIC 2014

The Challenges

Precision (resolution)

Granularity

Power consumption

Readout Speed

Material budget

Position Sensitive Detectors

Semi-conductor detectors

- Pixel technologies
- Alternative materials

Gaseous goes silicon - Pixel TPC

Power and heat management Material management Gaseous detectors

- Resolution
- Robustness
- Large area

SEMICONDUCTOR DETECTORS

Pixel Detectors

... everyone wants pixels everywhere ..

LHC: radiation hardness is key parameter

Non LHC applications Lepton Collider

Different technologies CMOS DEPFET FPCCD 3D Chronopixel Sol HV-CMOS hybrid

Trends:

- Small pixels
- Low mass
- Local intelligence

PANIC 2014

Pixel Detectors

Challenges:

Resolution: **<5μm** single point, Material: goal **<0.15%** radiation length/ layer Readout speed (in particular CLIC)

Plume ladder prototype: achieved 0.2%

LHC upgrade: 0.3%/ layer

PANIC 2014

Pixel Technologies

Profit from the fast progress in Silicon technology:

- Higher integration
- More local intelligence possible

Per pixel:

- Sensing
- Storage (multiple hits)
- Hit-pre-processing

Can be important for "fast" readout, e.g. at ILC or CLIC

PANIC 2014

The Material Challenge

CMS tracker upgrade scenario: reduce by factor 2

ILD estimate

PANIC 2014

The Material Challenge

R&D done within LC and LHC communities has paved the way towards significantly thinner detectors. But be aware of services...

Power Management

Powering:

- Services are major part of material budget
- Advanced powering schemes can help:
 - DC-DC
 - Power capacitors...

Air cooling concept studies

- Low mass
- Sufficient for ILC/ CLIC conditions?

PANIC 2014

Novel Sensor Types

Diamond: fast, radiation hard

Sensor: 4.9x4.9 mm², 290 μ m thick

Availability of large detector-grade material still a problem

- Niche applications (beam monitoring, see CMS, FLASH)
- Small signals
- Still rather expensive

Other options: Sapphire, GaAs (non-HEP,NP, ..)

- CVD diamond
- Monocrystalline
- New technology: grow on Iridium

GASEOUS DETECTORS

Gaseous Detectors

ions

electrons

Gaseous detectors:

- Granularity
- Robustness
- Relative low cost for large volumes

Applications in

- Tracking detectors
- Calorimetric detectors
- Muon systems
- Other experiments

Focus of new developments: Gas amplification systems based on Micro pattern gas detectors

induction gap

Integration of gas amplification into Silicon technology:

INGRID and friends

= 5 μm

50 µm

55 μm 70 μm

Gaseous Detectors

Time projection chambers

- ALICE
- PANDA
- ILC (?)

...

• Rare events searches

- Established technology, broadly used
- Move to highly pixelated readout structures
- Merge the advantages of Si technology with gaseous technology

Picture of track in a TPC recorded with a TPC quipped with pixel readout (50 um pixel). Structure of ionization becomes visible.

Gaseous Detectors

visible.

PANIC 2014

TPC in Neutrino Physics

TPC based on liquid Argon

TPC information supplemented by fast timing information from LAr scintillation light recorded with SiPM

> Detector design will evolve with input from new partners and R&D program

LBNE Liquid Argon TPC GOAL: ≥34 kt fiducial mass Volume: 18m x 23m x 51m x 2 Total Liquid Argon Mass:~50 kton

(a)

4 GeV ve CC

20

Scintillating Fibre Tracker R&D

SiPM make small and dense fibre tracker feasible:

LHCb: 3 stations, stereo angle, 250um fibres 2.5m long

Attractive alternative for "intermediate" resolution and planar geometries.

Availability of integrated and miniaturised readout systems opens new possibilities.

CALORIMETRY

PANIC 2014

Calorimetry

Calorimetric detectors: core part of modern detectors

- Shower physics
- Reconstruction
- Resolution

Exp.	Year	channels
TASSO	1975	12k
ALEPH	1989	72k
D0	1995	120k
ATLAS	2008	175k
ILD	2020	100000k

Full absorption: Crystall PANDA experiment

Sampling calorimeter CMS HCAL

PANIC 2014

Calorimeter Technologies

Crystal technology

Examples: CMS, PANDA

PbW crystals, dense, small Excellent energy resolution Limited segmentation

Dual readout technology

DREAM: Combine scintillation with Cerenkov for improved energy reconstruction

PANIC 2014

Particle Flow

Particle flow:

A concept to reconstruct complex events (hadronic final states) Relies on tracking and calorimetry

Particle Flow (PFA) is a way to handle fluctuations

Simulated shower in a highly granular calorimeter

Granularity is stressed more than intrinsic energy resolution

PANIC 2014

Particle Flow

Complex final states (e.g. W/Z)

PANIC 2014

Particle Flow

PANIC 2014 Particle Flow

Particle Flow

Complex final states (e.g. W/Z)

Physics with exclusive final states (e.g., PANDA with multiple photons in FS) Focus on photon resolution rather than topological reconstruction

Sampling Calorimeters

Segmentation

Particle flow = granularity Optimize relative to particle flow performance

Proposal for a Si-ECAL (Breitenbach/ Strom/ Frey)

Sampling Calorimeters

Integration of readout into the sensitive plane to save space and cabling

Particle flow = granularity Optimize relative to particle flow performance

Proposal for a Si-ECAL (Breitenbach/ Strom/ Frey)

PANIC 2014

Sampling Calorimeters: Silicon

Cell sizes typically 5x5 mm²

Integration of readout into the sensitive plane to save space and cabling

Similar proposal made in Europe by Brient/ Videau etal. (CALICE)

Sampling Calorimeters: Silicon

Test beam results from SLAC

Cell sizes typically 5x5 mm²

Integration of readout into the sensitive plane to save space and cabling

Similar proposal made in Europe by Brient/ Videau etal. (CALICE)

PANIC 2014

Silicon based Calorimetry

- Sampling calorimeters with silicon based sensitive planes are an attractive option.
- Large progress over the last years in hardware and in understanding
- CALICE: convincing test beam results to demonstrate the feasibility

Relative energy resolution of CALICE SI-ECAL

- Challenge:
 - Integration
 - Costs!

Example: ILD detector at the proposed ILC ECAL 100Mio channels

Silicon based Calorimetry

- Sampling calorimeters with silicon based sensitive planes are an attractive option.
- Large progress over the last years in hardware and in understanding

Example: ILD detector at the proposed ILC ECAL 100Mio channels

Key technological challenge:

- Handle the integration aspects
- Develop fully integrated designs
- Handle the power issues
- costs

PANIC 2014

Scintillator Based Calorimeter

- Availablity of SiPM allows highly granular scintillator based designs
- HCAL: 3x3cm² segmentation of 3mm thick scintillator read out by SiPM through wavelength shifting fiber (Elimination of WLS under study)
- Software compensation (e/p ~1.2) technique was show to work well through beam tests: 58%/E^{1/2} → 45%/E^{1/2}

Scintillator Based Calorimeter

- 3x3cm² segmentation of 3mm thick scintillator read out by SiPM through wavelength shifting fiber (Elimination of WLS under study)
- Software compensation (e/p ~1.2) technique was show to work well through beam tests: 58%/E^{1/2} → 45%/E^{1/2}
- Test beam results are also used for evaluation of GEANT4 physics list

PANIC 2014

SiPM Developments

Ultra fast single photon sensitive imager - Photon science

Silicon based photo detectors:

- Allow granular scintillator based detectors
- Applications in many other areas

Commercially available New development: digital SiPM

- Readout every pixel
- Broad applications

PANIC 2014

Digital Calorimetry

Digital calorimetry:

- Measure the energy of a particle through the number of cells hit
- Was tried already in the 80's (unsuccessfully), has seen a renaissance lately due to the availability of very granular systems.

PANIC 2014

Data Transfer

Optical transmission on a chip: waveguides

3/s

Photonic wire bond.

Modern detectors

- Highly granular systems: many channels
- Untriggered systems (PANDA, ILC): large continuous data flow

Integrate optical communication on the chips

Comments (instead of Conclusions)

Detector development is a very active field

I could only cover a few selected examples, and do not claim to be even close to complete. In particular I did not do justice to the field of neutrino physics/ astroparticle physics: apologies

Detector R&D is essential for our field

Comments (instead of Conclusions)

Detector development is a very active field

I could only cover a few selected examples, and do not claim to be even close to be complete. In particular I did not do justice to the field of neutrino physics/ astroparticle physics: apologies

Detector R&D is essential for our field

Detector R&D is driven by the scientific needs of our fields: close integration into the science community is essential, but cooperation with neighbouring fields is equally important and very useful

Support for detector R&D is often difficult to get, in particular for far-future ideas.

We need to improve the attractiveness of the field to young researchers and make this a viable option for their career.