# Measurement of the top-quark mass in lepton+jets final states at CMS

#### Peter Schleper, Markus Seidel, Hartmut Stadie

Universität Hamburg

Aug 29, 2014



GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung





# Measuring the top-quark mass at the LHC





- Motivation: m<sub>t</sub> is an important parameter of the Standard Model
- Preconditions:

5M  $t\bar{t}$  events at CMS in 2012 (8 TeV)

• Challenge: Treatment of systematic uncertainties below 1 GeV



#### Thank you for voting!

# Event selection: lepton+jets final state

- Trigger for isolated muon or electron (p<sub>T</sub> > 24/27 GeV)
- Exactly 1 isolated lepton with p<sub>T</sub> > 33 GeV, |η| < 2.1 (veto additional isolated e, μ)
- $\geq$  4 "particle flow" jets (anti- $k_t$ , R = 0.5) with  $p_T > 30$  GeV,  $|\eta| < 2.4$
- 2 jets b-tagged among the 4 leading jets
- 108 205 events in 19.7 fb<sup>-1</sup> 2012 data selected
- 94% *tī*, 4% single-top, 2% W+jets, 2% other



### Event reconstruction

Assign 4 leading jets to partons from tt decay, 2 b-jet assignments
Perform constrained kinematic fit (m<sub>W</sub> = 80.4 GeV, m<sub>t</sub> = m<sub>t</sub>)



 Select P<sub>gof</sub> > 0.2 → 28750 events in 19.7 fb<sup>-1</sup> 8 TeV data, 96.4% tt̄, 2.2% single-top, 1.2% W+jets, 0.2% other
 tt̄ composition: 42.0% correct, 20.8% wrong, 37.1% unmatched

# Ideogram method: probability densities

- Simulated samples with
  - 7 different top masses: 166.5–178.5 GeV
    - (MadGraph+MadSpin+Pythia6 Z2\*, 246M events in total)
  - 3 different JSF: 0.96, 1.00, 1.04 (scaled jet energies in simulation)
- Fit  $m_t^{\text{fit}}, m_W^{\text{reco}}$  distributions with analytical expressions
  - Parametrize linearly in  $m_t$ , JSF,  $m_t \times$  JSF

#### Example: correct permutations



### Ideogram method

 Calculate likelihood for event with *n* permutations, *j* denotes *correct*, *wrong* and *unmatched* permutations

$$\mathcal{L}\left(\text{event}|m_{t}, \text{JSF}\right) = \sum_{i=0}^{n} P_{gof}\left(i\right) P\left(m_{t,i}^{fit}, m_{W,i}^{reco}|m_{t}, \text{JSF}\right),$$
$$P\left(m_{t,i}^{fit}, m_{W,i}^{reco}|m_{t}, \text{JSF}\right) = \sum_{j} f_{j} P_{j}\left(m_{t,i}^{fit}|m_{t}, \text{JSF}\right) \cdot P_{j}\left(m_{W,i}^{reco}|m_{t}, \text{JSF}\right)$$

• Most likely  $m_t^{2D}$  and JSF by maximizing

$$\mathcal{L}(m_t, \mathsf{JSF}|\mathsf{sample}) \propto \prod_{\mathrm{events}} \mathcal{L}(\mathsf{event}|m_t, \mathsf{JSF})^{w_{\mathrm{event}}}$$

• Can also obtain  $m_t^{1D}$  from  $\mathcal{L}(m_t, \mathsf{JSF}=1|\mathsf{sample})$ 



# Calibration and validation

- 10 000 pseudo-experiments for every generated  $m_t$ -JSF combination
- Validation plots after small corrections (< 1 GeV/1%)
- Expected statistical uncertainty: 0.188 GeV



## Systematic uncertainties

|                                         | $\delta m_t^{2D}$ (GeV) | $\delta$ JSF        | $\delta m_t^{1D}$ (GeV) |
|-----------------------------------------|-------------------------|---------------------|-------------------------|
| Experimental uncertainties              |                         |                     |                         |
| Fit calibration                         | 0.10                    | 0.001               | 0.06                    |
| $p_T$ - and $\eta$ -dependent JES       | 0.18                    | 0.007               | 1.17                    |
| Lepton energy scale                     | 0.03                    | <0.001              | 0.03                    |
| MET                                     | 0.09                    | 0.001               | 0.01                    |
| Jet energy resolution                   | 0.26                    | 0.004               | 0.07                    |
| b tagging                               | 0.02                    | <0.001              | 0.01                    |
| Pileup                                  | 0.27                    | 0.005               | 0.17                    |
| Non-tt background                       | 0.11                    | 0.001               | 0.01                    |
| Modeling of hadronization               |                         |                     |                         |
| Flavor-dependent JES                    | 0.41                    | 0.004               | 0.32                    |
| b fragmentation                         | 0.06                    | 0.001               | 0.04                    |
| Semi-leptonic B hadron decays           | 0.16                    | <0.001              | 0.15                    |
| Modeling of the hard scattering process |                         |                     |                         |
| PDF                                     | 0.09                    | 0.001               | 0.05                    |
| $\mu_R$ and $\mu_F$ scales              | $0.12 \pm 0.13$         | $0.004 {\pm} 0.001$ | 0.25±0.08               |
| ME-PS matching threshold                | $0.15 \pm 0.13$         | $0.003 \pm 0.001$   | 0.07±0.08               |
| ME generator                            | 0.23±0.14               | $0.003 {\pm} 0.001$ | 0.20±0.08               |
| Modeling of non-perturbative QCD        |                         |                     |                         |
| Underlying event                        | 0.14±0.17               | $0.002 \pm 0.002$   | 0.06±0.10               |
| Color reconnection                      | 0.08±0.15               | $0.002 {\pm} 0.001$ | 0.07±0.09               |
| Total                                   | 0.75                    | 0.012               | 1.29                    |

■ Uncertainty reduced by 41.9% wrt to "1D" measurement

 Uncertainty reduced by 23.5% wrt to 7 TeV measurement (new flavour studies, larger simulated samples)

## Top-quark mass result

#### $m_t = 172.04 \pm 0.19 \text{ (stat+JSF)} \pm 0.75 \text{ (syst) GeV}$

 $\mathsf{JSF} \ = \ 1.007 \pm 0.002 \ (\mathsf{stat}) \pm 0.012 \ (\mathsf{syst})$ 

 $m_t^{
m 1D}~=~172.66\pm 0.11~{
m (stat)}\pm 1.29~{
m (syst)}~{
m GeV}$ 







## Measurement of dependency on event kinematics

- Measure on subsets depending on kinemaics observables
- Compare to models, data-MC difference should be flat



■ Tested 14 observables, compared data vs. MadGraph+Pythia Z2\*  $m_t^{2D} \chi^2/\text{ndf} = 35.85/47 \rightarrow P(\chi^2, \text{ndf}) = 0.88$ 

Markus Seidel (UHH)

Measurement of the top-quark mass

# Summary

• Measured the top-quark mass at 8 TeV:

$$\begin{array}{ll} m_t^{\rm 2D} &=& 172.04 \pm 0.19 \ ({\rm stat+JSF}) \pm 0.75 \ ({\rm syst}) \ {\rm GeV} \\ {\rm JSF} &=& 1.007 \pm 0.002 \ ({\rm stat}) \pm 0.012 \ ({\rm syst}) \end{array}$$

#### Measurement of dependency on event kinematics

- No significant deviations from simulation
- Measured  $m_t$  constant over phase-space

### Documentation

Public document CMS PAS TOP-14-001