Ultra-slow muon production with room-temperature thermal-muonium-emitting material

Collaboration List

S. Okada¹, P. Bakule², G. Beer³, Y. Fujiwara⁴, K. Ishida¹, M. Iwasaki¹, S. Kanda⁴, H. Kawai⁵, N. Kawamura⁶, R. Kitamura⁴, W. Lee⁷, G.M. Marshall⁸, Y. Matsuda⁴, T. Mibe⁶, Y. Miyake⁶, S. Nishimura⁴, Y. Oishi¹, A. Olin⁸, N. Saito⁶, K. Shimomura⁶, P. Strasser⁶, M. Tabata⁵, D. Tomono⁹, K. Ueno⁶, E. Won⁷, K. Yokoyama¹⁰

RIKEN¹, FZU², UVic³, Univ. of Tokyo⁴, Chiba Univ.⁵, KEK⁶, Korea Univ.⁷, TRIUMF⁸, Kyoto Univ.⁹, QMUL¹⁰

RIKEN Nishina Center Shinji Okada

What is ultra-slow muon ?

in a 5% (rms) momentum bite

Applications

Grant-in-Aid for Scientific Research on Innovative Areas 2011-2015, "Ultra Slow Muon Microscope" (<u>http://slowmuon.jp/english/index.html</u>)

Particle physics

Measuring the **muon g-2** and EDM at J-PARC

-> talk by Prof. A.Denig on Tuesday

Muonium-emitting material

New idea : Silica aerogel

- Same chemical composition as silica powder
- Self standing
- Extremely low density

Merit of room-temperature target

1. Handiness

➡ Easy to handle ⇔ hot-W radiating significant heat

2. Smaller Emittance

- ➡ lower energies of the produced Mu
- smaller transverse momentum of muon beam
- 3. Smaller Spacial Spread & Doppler Broadening
 - ➡ Narrower energy distribution
 - smaller spatial spread of Mu in vacuum
 - smaller Doppler broadening of resonant line for Mu excitation
 - ➡ more efficient use of laser power

TRIUMF S1249 experiment

The first Mu observation from aerogel

Toward more yields

→ increasing surface area

13年7月6日土曜日

Laser-drilled aerogels

surface

Pitch : 300 - 500 µm Hole size : ~ 300µm Depth :~ 2mm

All silica-aerogel samples we used were prepared at Chiba Univ. by M. Tabata (Chiba/JAXA)) and drilled by Y. Oishi (RIKEN) & Y. Asakawa (LIGHTEC Inc.)

Result from laser-drilled aerogels

Fig. 3 Time distributions of positrons in the entire target region and in each of three vacuum regions, for flat aerogel (open circle) and laser-ablated aerogel with pitch of 300 μm (closed circle). No background has been subtracted

11

the operational level for g-2!

the final statistical sensitivity of 0.1 ppm)

(though still 5 times smaller than the design intensity to achieve

What's next ?

Ultra-slow muon production at RAL

R & D of room-temperature target to be developed to a <u>practical level</u>

(1) Production :

ultra-slow muon production with the room-temp.

(2) Extraction :

establishment of ultra-slow muon extraction scheme

Hot-W (electrode) vs. Aerogel (insulator)

(3) Stability :

testing of the long term stability

(4) Optimization towards higher yield :

- structured-target shape
- laser with reflection mirrors installed near the target
- etc ...

RIKEN-RAL Muon Facility (UK)

Experimental setup

Summary

✓ Ultra-slow muon for next generation μ SR and muon g-2/EDM exp.

 \checkmark Plenty of merit with room-temperature target

✓ Great performance with laser-drilled aerogel target (TRIUMF S1249)

 \checkmark R & D of room-temp. target at RAL to be developed to a practical level

Backup slides

another idea for more yields

sandwiched aerogel target

Muon extraction after laser ionization

Beam trajectories Beam trajectories

muon g-2 and EDM

 $\mu = g_{\mu} (e/2m_{\mu}) s$ $a_{\mu} = (g_{\mu} - 2)/2 : \text{anomalous magnetic moment}$ Dirac equation predicts g=2. Radiative corrections deviates g from 2. $a = a(QED) + a(Hadronic) + a(Weak) + \dots$ $\int_{\mu}^{\gamma} + \dots + \dots + \chi_{\mu}$ Winknown

Contributions from all particles, even undiscovered

d = η (e/2mc) *s*If EDM is nonzero -> T reversal is violated.
=> First indication of CP violation in the lepton sector.

muon g-2

BNL E821 measured a_{μ} to 0.7 ppm for μ^+ and μ^- (sum 0.5 ppm) Deviation of experiment and theory by 3.4 σ was observed. New physics?

Experiment and theory to better precision is waited for.

Hadronic contribution (experimental input) study by several groups and methods ("e+e- $\rightarrow \gamma^* \rightarrow$ hadrons" and tau-decay). => Some variations but not enough large to explain the discrepancy.

Muon g-2/EDM@J-PARC

We plan an independent measurement at J-PARC based on ultra-cold muon beam and MRI-type storage ring.

with different scheme - in systematic errors.

Out-of plane oscillation is an indication of EDM.

Make E=0 by making focusing need low. - no high "magic" momentum requirement. Need of well controlled muon beam

- start with ultra cold muon beam.

Our goal: comparison

	BNL-E821	Fermilab	J-PARC
Muon momentum	3.09 GeV/c		0.3 GeV/c
gamma	29.3		3
Storage field	B=1.45 T		3.0 T
Focusing field	Electric quad		Very weak magnetic
# of detected μ+ decays	5.0E9	1.8E11	1.5E12
# of detected μ- decays	3.6E9	-	-
Precision (stat)	0.46 ppm	0.1 ppm	0.1 ppm*

 * Based on 1 x 10⁶/s stored muons x 1 year data taking (10⁷ s).

Muon g-2/EDM@J-PARC

High intensity Japan Proton Accelerator Research Complex 1 MW at 3 GeV (0.3 MW at present), 0.75 MW at 50 GeV

proposed experimental site

J-PARC MLF (Materials and Life Science Facility)

Ultra-slow muon from Thermal Muonium

Typical surface muon beam (4 MeV, Δp^2 %, 4cm ϕ , 50 mr)

Stop muons in a material, some diffuse out at thermal energy. Good muonium emitter and an intense laser to remove the electron are essential.

Silica powder has been known to be a good Mu emitter at room temperature Mu diffuse out through network of SiO₂ grains (large surface area)

Silica aerogels with similar network structure can be more easily handled and may fit better our system

Measurement S1249@TRIUMF

First results S1249@TRIUMF 2010-2011

Mu excess over reference target was observed Yield was "not" satisfactory (~1% emission per stopped μ)

More muoniums wanted

Muon should stop near surface (<0.1mm) to come out!

Simulation with structured surface by M. Iwasaki (Ultra Slow Muon Microscope Meeting, Sapporo, 2012)

How to make it?

Ion beam, dust-gun, mold, push-pin, ... Laser ablation was successfully applied.

New measurement (S1249@TRIUMF 2013)

Muon source

Huge increase (x10) of Mu yield in measurement last October.
We now have about 10% of muons coming out in vacuum.
(from 23 MeV/c, σp=2%)
Expected ultra-cold muon yield is only factors away from requirement.
(present estimate is 0.2 x 10⁵/s assuming other conditions are fulfilled)

=> Further optimization of target condition (density, hole size/pitch, ...) (we initially tested only four samples) is now feasible at J-PARC

=> Demonstration of ionization from silica aerogel is planned at RIKEN-RAL.

Mu Ionization Laser

Remove e- for g-2 measurement (and acceleration) with lasers

Improved Coherent Lyman-α **System Configuration** OMEGA 1: High energy 212.556 nm source Fiber amplifier Distributed All-solid-state feedback laser amplifier Ш 1062.78 nm (ω₁/5) 0.1 mJ $\Delta v = 1 \text{ GHz}$ Nonlinear 100 mJ frequency conversion 212.556 nm 0.8 mJ .BO CLBO 4*ω*1/5 201/5 ω_1 OMEGA 2: 820.649 nm source Optical parametric Diode Diode generator and amplifier laser laser Mu 820.649 nm (w₂) $\Delta v_2 = 230 \text{ GHz}$ Lyman-α Shifter: Krypton gas cell Kr 4p⁵5p Lyman-α ω_{2} Mu:122.09 nm $\omega_{Ly-\alpha}$ Kr 4p⁶ H: 121.57 nm

Lyman- α laser progress

New Lyman-α laser developed by RIKEN laser group for ultra-slow-muon-microscope project (USMM by Grant-in-Aid) aimed for use of ultra-cold-muons for materials study => Laser intensity goal is 100 µJ (x100 improvement over record)

Lyman-α was introduced to the USMM beamline this year. Laser tuning and calibration progressing => Good R&D for muon g-2/EDM laser Ionization test (with Mu source from hot-W) this autumn

laser system installed in J-PARC (for USMM)

laser fluorescence in the source chamber

Ultra-cold muon from silica aerogel

Muonium to ultra-cold muon beam by ionization and acceleration So far all the ultra-cold muon beam at KEK and RIKEN-RAL Muon Facility was based on Mu from hot-W (~2000K) and with static field (~10 keV).

Ultra-cold muon beam from silica-aerogel source need to be demonstrated.

Silica aerogel will be evaluated for

- 1) long term stability of Mu yield
- 2) brittleness and vacuum
- 3) electrical field stability
- (use of meshed metal container)
- and also we try good things
- 1) colder beam spread
- 2) multiple-pass laser mirror
- 3) other functions (spin control, ...)

A new Muon Source chamber will be constructed for evaluation study.

Initial acceleration simulation for ex. RFQ capture loss~30%, muon decay x 0.7

Muon storage magnet and detector

Beam Injection

Injection scheme Spiral injection + weak magnetic kick (8 mr) to storage-orbit injection through guided tunnel

Design of injection-matching transport beamline. Spiral injection test with mini-solenoid and electron gun soon

Muon storage magnet and field monitor

Good synergy with MUSEUM (P. Strasser, MuHFS talk)

in physics ($\lambda = \mu_{\mu}/\mu_{p}$ needed for g-2)

ultra-precision magnet (3T vs 1.7 T) shimming method of MuHFS magnet

MuHFS magnet 1.7T

and field measurement monitoring system, NMR probe

Detector

measure muon decay positron tracks with Silicon-strip detectors forward/backward decay gives different positron momentum

Collaboration

- > 98 members (...still evolving)
- > 21 Institutions
- Academy of Science, BNL, BINP, CRNS-APC, UC Riverside, Charles U., KEK, Korea U, NIRS, UNM, Osaka U., PMCU, RCNP, STFC RAL, RIKEN, Rikkyo U., SUNYSB, CRC Tohoku, U. Tokyo, TITech, TRIUMF, U. Victoria
- 9 countries
- Canada, China, Czech, France, Japan, Korea, Russia, UK, USA (alphabetic order)

Msaharu Aoki⁸, Pavel Bakule²⁰, Bernd Bassallock²⁴, George Beer²⁶, Gerry Bunce²⁷, Abhay Deshpande¹⁹, Simon Eidelman⁴, Douglas E. Fields²⁴, Miloslav Finger⁴, Michael Finger Jr.⁶ Yuya Fujiwara^{17,14}, Yoshinori Fukao¹⁰, Noriyosu Hayashizaki¹⁶, Seiko Hirota^{10,14}, Hiromi linuma¹⁰ Masanori Ikegami¹⁰, Masahiro Ikeno¹⁰, Katsuhiko Ishida¹⁷, Masa Iwasaki¹⁷, Ryosuke Kadono¹⁰, Takuya Kakurai¹², Takuya Kamitani⁴⁰, Yukihide Kamiya¹⁰, Sohtaro Kanda¹², Frédéric Kapusta¹ Naritoshi Kawamura¹², Takashi Kohriki¹⁰, Sachio Komamiya¹⁴, Kunio Koseki¹⁰, Yoshitaka Kuno⁶, Alfredo Luccio¹², Oleg Luchev², Muneyoshi Maki¹², Gien Marshall²², Mika Masuzawa¹⁰ Yasuyuki Matsuda⁹, Teijiro Matsuzaki¹⁷, Tsutomu Mibe¹⁰, Katsumi Midorikawa², Satushi Mihara¹ Yasuhiro Miyaks¹⁰, William M. Morse³, Jiro Murata^{47,13}, Ryotaro Muto¹⁰, Kanetada Nagamine^{23,10,18}, Takashi Naito¹⁰, Hisayoshi Nakayama¹⁰, Megumi Naruki¹⁰, Makiko Nio²¹, Hajime Nishiguchi¹⁰, Daisuke Nomura¹⁰, Hiroyuki Noumi¹⁵, Tomoko Ogawa², Toru Ogitau⁶⁰, Kazuki. Ohishi²⁺, Katsunobu Oide¹⁰, Masahiro Okamura³, Art Olin²2,³0, Notihito F. Saito², Naohito Saito^{10,14}, Yasuhiro Sakemi⁷, Ken-ichi Sasaki¹⁰, Osamu Sasaki¹⁰ Akira Sato¹², Aurore Savoy-Navaro⁵, Yannis K. Semertzidis³, Yuri Shatunov¹², Koichiro Shimomura¹⁰, Boris Shwartz⁴, Wilfrid da Silva²⁵, Patrick Strasser¹⁰, Ryubei Sugahara¹⁰ Michinaka Sugano¹⁰, Ken-ichi Tanaka¹⁰, Manobu Tanaka¹⁰, Nobuhiro Terunuma¹⁰, Nobukuan Toge¹⁰, Dai Temamo¹⁷, Eiko Torikai¹², Toshiyuki Toshito¹¹, Akihias Tuyuda¹⁰, Kyo Tsukada¹², Tomohisa Uchida¹⁰, Kazuki Ucno⁴⁷, Viasov Vrba¹, Satoshi Wada², Akira Yamamoto¹⁰, Kaoru Yokuya¹⁰, Koji Yokoyama¹⁷, Makoto Yoshida¹⁰, Mitsuhiro Yoshida¹⁰ Koji Yoshimura^B

9

Muon g-2/EDM@J-PARC : Status

J-PARC PAC

Conceptual Design Report at J-PARC PAC (13 Jan 2012) Stage 1 approval as E34 (21 Sep 2012) Most recent PAC report highly recognized our progress in muon source.

Collaboration Meeting held every half year. 9th C.M. will be in 6-8 Nov at KAIST in Daejon, Korea

Technical Design Report to be made this year Expect to start running in 3~4 years (dep. on budget)

Several small grants obtained for development. Overall budget is still a issue.

Summary

New muon g-2/EDM measurement is under preparation at J-PARC. Since last year, there has been significant progresses.

Muon Source (x 10 Mu emission) Practical Mu ionization study will follow

New Lyman- α Laser progressing in collaboration with USMM group

Also progress in accelerator, storage magnet, injection, detection.

Concept of new beamline at RAL port-3

RIKEN-RAL Muon Facility

Motivation for new beamline

No radiating significant heat

Optimal beamline design is different

Present beamline port-3

Concept of new beamline (1)

Concept of new beamline (2)

Final design

Main chamber / beamline design

(A) Minimum setup

- Only meshed electrodes and SOA lens
- Enough for R&D of laser ionization and mu+ extraction
- Beamline extension is possible for more study of sharpening
- (B) Lya reflection mirrors
- (C) Minimization of incident surface muon size

(D) Magnetic coils (for control of spin and earth magnetism / fringing field)

(A) Minimum setup

Beam trajectories

calculated by CPO (Charged Particle Optics)

Background simulation

(B) Ly α reflection mirrors

(w/ circularly polarized laser?)

(C) Minimization of incident surface muon size

Surface muon beam size at final focus

Setup overview

(D) Magnetic coils

An idea of spin control at target

14 kHz / Gauss	1.4 MHz / Gauss		14 kHz / Gauss
slow μ SR	fast spin rotation		slow μ SR
(surface)	Mu	Mu (in vacuum)	(Ultra-slow)
injection	stop & forming Mu	diffusion process	ionization
$\rightarrow \mu^{+}$	(µ ⁺	···· · · · · · · · · · · · · · · · · ·	μ ⁺
	target material		laser

Magnetic field coils (& MuSR counters)

Aim:

- Stabilize spin against earth & leakage magnetic field
- Measure the field at the sample directly (Calibrate field sensor relative to center field)
- Optimize muon stopping condition by MuSR

Muonim spin control at target

An idea of spin control at target

14 kHz / Gauss	1.4 MHz / Gauss		14 kHz / Gauss
slow μ SR	fast spin rotation		slow μ SR
(surface)	Mu	Mu (in vacuum)	(Ultra-slow)
injection	stop & forming Mu	diffusion process	ionization
$\rightarrow \mu^+$	(µ ⁺	···· · · · · · · · · · · · · · · · · ·	μ ⁺
	target material		laser

Mu spin control

Mu spin control

Polarization -> $[cos(15)+cos(-15)]/2 = cos(15) \sim 0.97$

(for transversal polarization, just changing the sign of the magnet)

lon source for beam tune

beam tune without muon beam

without laser

NIM B 266 (2008) 335

The first laser is operating at 212.5 nm and is tuned to a two-photon resonance in Kr, while the second laser operating in the range of 810 - 850 nm provides the tuneability of the Lyman-a output and is designed to have sufficient bandwidth to cover the Doppler width of muonium. The wide tuneability of the output allows us to ionize under the same conditions **not only muonium**, **but also hydrogen or deuterium**. This provides a useful tool for testing the whole apparatus without need for the muon beam.

Since we cannot use Li⁺ or D⁺ dissociated by the hot tungsten target, we **need ion sources**.

(just a filament for bulb?)

Capillary
Measured surface muon profile of RAL port-3 beamline

on 7-8 April, 2011

Focusing with tapered capillary method

Material	Outlet	Initial muon beam momentum (MeV/c)				
		30	35	40	45	Average
Plates						
Polished copper	20 mm	1.268(6)(63)	1.404(5)(70)	1.142(3)(57)	1.221(3)(61)	1.24(3)
Rough copper	20 mm	1.231(6)(62)	1.360(5)(68)	1.154(3)(58)	1.187(4)(59)	1.22(3)
	10 mm	1.520(9)(152)		1.446(6)(145)		1.48(11)
Gold-coated copper	20 mm	1.364(6)(68)	1.481(6)(74)	1.209(3)(60)	1.282(4)(64)	1.32(3)
Glass	20 mm	1.137(5)(57)	1.223(4)(52)	1.046(3)(52)	1.110(4)(56)	1.13(3)
Initial beam intensity (muons/s)	20 mm	1.6×10^{3}	2.8×10^{3}	5.2×10^{3}	5.8×10^{3}	
Tubes						
Conical glass	$20\mathrm{mm}\phi$	1.477(6)(103)		1.415(4)(99)		1.44(7)
	$10\mathrm{mm}\phi$	1.508(10)(211)		1.586(6)(222)		1.55(15)
Trapezoid glass	10 mm square	1.542(9)(216)		1.336(5)(187)		1.42(14)
Trapezoid copper	10 mm square	1.825(10)(256)		1.652(5)(231)		1.73(17)
Initial beam intensity (muons/s)	10 mm square	6.0×10^{2}		1.4×10^{3}		

D. Tomono et al, JPSJ 80 (2011) 044501