

## Rare decays at LHCb

# Fatima Soomro

# Presented at The 20th International Conference on Particles and Nuclei, 24 - 29 August 2014, Hamburg

On behalf of the LHCb collaboration.

August 28, 2014





- Will talk about decays involving  $b \rightarrow s$  quark transitions (also  $c \rightarrow u$ )
- Within the Standard Model (SM) only the *charged current* mediates flavour changing transitions at tree level



- Flavour changing neutral currents (FCNC) are **only** allowed via loop diagrams
  - $\Rightarrow$  Contribution in SM suppressed
  - $\Rightarrow$  Sensitive to NP particles contributing to the loop

3 / 29

### Observables in $b \rightarrow s$ loop decays

Rare decays are parametrized in terms of operators and Wilson coefficients



 $B \rightarrow \ell^+ \ell^- K^{(*)}$ deca

Photon polarization in  $b \rightarrow s\gamma$  transition Summary

### The LHCb detector

A dedicated flavour physics experiment at the LHC.

Has recorded  $3 \text{ fb}^{-1}$  of luminosity from *pp* collisions at 7 and 8 TeV



- Precise vertex reconstruction: a dedicated silicon detector (VELO) around the pp interaction point
- Excellent particle identification: Few % π → K rate for > 90% K identification efficiency
- Clean muon identification: π → K rate of 1% for 98% μ identification efficiency
- Excellent mass resolution: typically 7-20 MeV



Fatima Soomro (EPFL)

Rare decays at LHCb

| Introduction | FCNC decay searches | $B \rightarrow \ell^+ \ell^- K^{(*)}$ decays | Photon polarization in $b \rightarrow s\gamma$ transition | Summary |
|--------------|---------------------|----------------------------------------------|-----------------------------------------------------------|---------|
| 0000         |                     |                                              |                                                           |         |
|              |                     |                                              |                                                           |         |

### **1** FCNC decay searches

- **2**  $B \rightarrow \ell^+ \ell^- K^{(*)}$ decays
- **3** Photon polarization in  $b \rightarrow s\gamma$  transition



| Introduction | FCNC decay searches | $B \rightarrow \ell^+ \ell^- K^{(*)}$ decays | Photon polarization in $b \rightarrow s\gamma$ transition | Summary |
|--------------|---------------------|----------------------------------------------|-----------------------------------------------------------|---------|
|              |                     |                                              |                                                           |         |
|              |                     |                                              |                                                           |         |

$$B_s \rightarrow \mu^+ \mu^-$$
 and  $B^0 \rightarrow \mu^+ \mu^-$ 



# $B_s ightarrow \mu^+ \mu^-$ and $B^0 ightarrow \mu^+ \mu^-$

CKM and helicity suppressed in the SM, theory prediction:



NP: (pseudo) scalars in models with extended Higgs sector: MSSM, 2HDM etc.

 $\Rightarrow \text{ enhancement in branching fraction possible } \left(C_{S,P}^{MSSM}\right)^2 \propto \left(\frac{m_b m_\mu tan^6 \beta}{M_*^2}\right)^2$ 



Introduction 0000 FCNC decay searches

 $B \rightarrow \ell^+ \ell^- K^{(*)}$ decay

Photon polarization in  $b \rightarrow s\gamma$  transition Summary

# $B^0_{(s)} \rightarrow \mu^+ \mu^-$ analysis strategy

Phys. Rev. Lett. 111 (2013) 101805



#### Analysis strategy shared by rare decay

#### searches at LHCb

- Perform analysis in bins of dimuon invarian mass and a multivariate classifier (BDT) which rejects combinatorial background
   ⇒ BDT is calibrated on data
- Particle identification cuts to reject specific B (or D) decays
- BR normalized to a well known channel

For  $B^0_{(s)} \rightarrow \mu^+ \mu^-$  decays, the BDT is calibrated on a  $B^0_{(s)} \rightarrow h^+ h'^-$  data sample and the BR is normalized to  $B^+ \rightarrow J/\psi K^+$  and  $B^0 \rightarrow K^+ \pi^-$ 



FCNC decay searches

 $B \rightarrow \ell^+ \ell^- K^{(*)} dec$ 

Photon polarization in  $b \rightarrow s\gamma$  transition Summary

### Combined LHCb and CMS result

LHCb-CONF-2013-012, CMS-PAS-BPH-13-007

Naive combination of LHCb and CMS results v/s theory prediction (Likelihood combination in preparation)

 $BR(B_s \rightarrow \mu^+ \mu^-) = (2.9 \pm 0.7) \times 10^{-9}$ 

 $BR(B_s \rightarrow \mu^+ \mu^-) = (3.65 \pm 0.23) \times 10^{-9}$ 

 $BR(B^0 \to \mu^+ \mu^-) = (3.6^{+1.6}_{-1.4}) \times 10^{-10}$  $BR(B^0 \to \mu^+ \mu^-) = (1.06 \pm 0.09) \times 10^{-10}$ 



The result rules out significant SUSY phase space and places constraints on *any* new (pseudo)scalar particles [e.g. arXiv:1310.2556]

Rare decays at LHCb

| Introduction | FCNC decay searches | $B \rightarrow \ell^+ \ell^- K^{(*)}$ decays | Photon polarization |
|--------------|---------------------|----------------------------------------------|---------------------|
| 0000         | 00000000            |                                              |                     |

### Rare decays of charm mesons



$$D^0 
ightarrow \mu^+ \mu^-$$
 decay - I

PLB 725(2013) 15-24

#### D mesons provide a unique window into up type FCNCs

- ✓ Effective GIM cancellation. SM BR ~  $10^{-18}$ !!
- $\pmb{\mathsf{X}}~~\mathsf{SM}$  dominated by long distance contribution
- $10^{-13} < BR(D^0 \rightarrow \mu^+ \mu^-) < 6 \times 10^{-11}$ G. Burdman et al. PRD 66 (2002)
- Could be upto  $10^{-9}$  in some NP models





$$D^0 
ightarrow \mu^+ \mu^-$$
 decay - I

PLB 725(2013) 15-24

#### D mesons provide a unique window into up type FCNCs

- ✓ Effective GIM cancellation. SM BR ~  $10^{-18}!!$
- $\boldsymbol{X}$  SM dominated by long distance contribution
- $10^{-13} < BR(D^0 \rightarrow \mu^+ \mu^-) < 6 \times 10^{-11}$ G. Burdman et al. PRD 66 (2002)
- Could be upto  $10^{-9}$  in some NP models

#### LHCb analysis

- $D^{*+}$  tagged sample of  $D^{*+} \rightarrow D^0(\mu^+\mu^-)\pi^+$
- Use BDT to reject combinatorial background
- Yield extracted from 2D fit to  $m(D^0)$  and  $\Delta m(D^{*+} D^0)$
- Normalize to  $D^0 \rightarrow \pi^+ \pi^-$





FCNC decay searches

 $B \rightarrow \ell^+ \ell^- K^{(*)}$ decay

Photon polarization in  $b \rightarrow s\gamma$  transition Summary

$$D^0 
ightarrow \mu^+ \mu^-$$
 decay - II

PLB 725(2013) 15-24



Belle [PRD 81 (2010) 091102] CDF [PRD 82 (2010) 091105] CMS [CMS-PAS-BPH-11-017] LHCb [PLB 725 (2013) 15-24]

LHC*b* limit with 1 fb<sup>-1</sup>:  $BR(D^0 \to \mu^+ \mu^-) < 6.2(7.6) \times 10^{-9} \text{ at } 90(95)\%$  CL



$$D^+ 
ightarrow \pi^+ \mu^+ \mu^-$$
 decay - I

PLB 724(2013) 203-212

Another  $c \rightarrow u$  transition

- Background from  $D^+_{(s)} \rightarrow \pi^+ \pi^- \pi^+$  decays
- Also from  $\rho$ ,  $\omega$  and  $\phi$  resonances in the  $\mu^+$   $\mu^-$  system
- Search for signal performed in 250 <  $m_{\mu^+\mu^-}$  < 252 and 1250 <  $m_{\mu^+\mu^-}$  < 2000 MeV
- Normalize to  $D^+ \rightarrow \phi(\mu^+\mu^-)\pi^+$





$$D^+ 
ightarrow \pi^+ \mu^+ \mu^-$$
 decay - II



Gray shaded area shows the  $D^+_{(s)} \rightarrow \pi^+\pi^-\pi^+$  background Green line shows the best fit to  $D^+ \rightarrow \pi^+\mu^+\mu^-$ 



## $D^+ ightarrow \pi^- \mu^+ \mu^+$ decay

PLB 724(2013) 203-212

#### Lepton number violating decay; can be mediated by Majorana neutrinos



- Strategy and normalization same as  $D^+ \to \pi^+ \mu^+ \mu^-$
- Analysis performed in bins of  $m_{\pi^+\mu^-}$





### $D^+ ightarrow \pi^- \mu^+ \mu^+$ decay

PLB 724(2013) 203-212

#### Lepton number violating decay; can be mediated by Majorana neutrinos



- Strategy and normalization same as  $D^+ \to \pi^+ \mu^+ \mu^-$
- Analysis performed in bins of  $m_{\pi^+\mu^-}$

#### Results at 90 (95) % CL

$$\begin{split} & BR(D^+ \to \pi^+ \mu^+ \mu^-) < 7.3(8.3) \times 10^{-8} \\ & BR(D_s^+ \to \pi^+ \mu^+ \mu^-) < 4.1(4.8) \times 10^{-7} \\ & BR(D^+ \to \pi^- \mu^+ \mu^+) < 2.2(2.5) \times 10^{-8} \\ & BR(D_s^+ \to \pi^- \mu^+ \mu^+) < 1.2(1.4) \times 10^{-7} \end{split}$$

A factor of 50 improvement upon previous results



# $B \rightarrow \ell^+ \ell^- K^{(*)}$ decays



Photon polarization in  $b \rightarrow s\gamma$  transition Summary

$$B_d^0 \rightarrow K^{*0} \mu^+ \mu^-$$

The decay can be described by three angles  $(\theta_I, \theta_K, \phi)$  and the dimuon invariant mass  $(q^2)$ 

- ✓ Sensitive to O<sub>7</sub>, O<sub>9</sub> and O<sub>10</sub> and their right handed counter parts
- $\pmb{\mathsf{X}}$  Theory uncertainty due to form factors
- ✓ Look at angular observables where some uncertainties cancel at leading order
- ✓ The decay rate an be written as a function of the K<sup>\*0</sup> polarization amplitudes
  - $\Rightarrow$  construct observables to measure the

interference between them





# $B^0_d \rightarrow K^{*0} \mu^+ \mu^-$ Angular analysis

[JHEP 08 (2013) 131]

Using a folding rechnique over the  $\phi$  angle, the decay rate can be written as a function of only 4 variables (compared to 12)

 $\begin{array}{ll} A_{\text{FB}} & \text{The dimuon forward backward asymmetry} \\ F_L & \text{Fraction of longitudinal } K^{*0} \text{ polarization} \\ A_T^2/S_3 & \text{Asymmetry sensitive to the (virtual) photon polarization} \\ A_9 & \text{A CP asymmetry} \end{array}$ 

#### Powerful (and many) probes of NP. Example from Generalized Supersymmetric Model



Example of theory predictions (From JHEP 0901:019,2009)



 $B \to \ell^+ \ell^- K^{(*)} decays$ 

Photon polarization in  $b \rightarrow s\gamma$  transition Summary



[JHEP 08 (2013) 131]



Theory predictions from JHEP 07 (2011) and references therein.





$$\mathsf{B}^0_d o \mathsf{K}^{*0} \mu^+ \mu^-$$
 angular analysis - II

PRL 111 191801 (2013)

- Can introduce different angular foldings to access different angular terms
- Observables where form-factor uncertainties cancel at leading order

$$P_{4,5}' = S_{4,5} / \sqrt{F_L (1 - F_L)}$$



Theory predictions from JHEP, 1305:137, 2013

A local discrepancy of  $3.7\sigma$  observed in  $P'_5$ . Probability to observe at least one bin as discrepant or more is 0.5%

Fatima Soomro (EPFL)

Rare decays at LHCb

Introduction FC 0000 00  $B \to \ell^+ \ell^- K^{(*)} \text{decays}$ 

Photon polarization in  $b \rightarrow s\gamma$  transition Summar 000

# Explaining the $P'_5$ anomaly [in progress]

- LHCb measurement was followed by a lot of theoretical activity
- Conclusions differ because different inputs have been used in these analyses
   e.g. using only high q<sup>2</sup> LHCb measurements, the

discrepancy becomes smaller



| Decotes-Genon, Matias, Virto<br>PRD 88 074002 (2013)        | Global fit to $b \rightarrow s\gamma$ and $b -$<br>Find a 4.5 $\sigma$ discrepancy fro | <i>• sll</i> data<br>m SM. Fit favours <i>C</i> <sub>9</sub> <sup>NP</sup> = −1.5 |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Altmannshofer, Straub<br>EPJC 73 2646 (2013)                | Global analysis, discrepancy<br>modified C <sub>9</sub> <sup>(1)</sup> . Can be expla  | of $3\sigma$ , can be described by ained by a flavour changing $Z'$               |
| JHEP 01 (2014) 069                                          | Also favour a $Z'$ but at a h                                                          | igher mass                                                                        |
| Beaujean, Bobeth, van Dyk<br>Eur. Phys. J. C 74 (2014) 2897 | Float form-factor undertain<br>The discrepancy becomes 2                               | ties and use high $q^2$ bins.<br>$\sigma$                                         |
| Jaeger and Camalich<br>JHEP 05 (2013) 043                   | Also try to address the size in the large recoil (low $q^2$ )                          | of form factor uncertainties                                                      |
| Fatima Soomro (EPFL)                                        | Rare decays at LHCb                                                                    | August 28, 2014 21 / 2                                                            |

 $B \rightarrow \ell^+ \ell^- K^{(*)}$  decays FCNC decay searches 00000000

# Differential branching fractions of $B \to K^{(*)} \mu^+ \mu^-$

• If  $C_0^{NP} = -1.5$ , we expect to see a suppression of the  $B \to K^{(*)} \mu^+ \mu^-$  rate



Fatima Soomro (EPFL)

Introduction FCNC decay searches  $B \rightarrow \ell^+ \ell^- K^{(*)}$  decays Photon polarization in  $b \rightarrow s\gamma$  transition 0000 0000000 000 000 000

# Differential branching fractions of $B \rightarrow K^{(*)} \mu^+ \mu^-$

- The decays rates and  $P'_5$  seem to be compatible with a negative  $C_9^{NP}$
- LHCb has recently observed  $c\overline{c}$  contribution in the high  $q^2$  region (~ 18  $MeV^2/c^4$ ) which has so far not been included in theory predictions
- Correcting the theory prediction for cc contribution could explain the P'<sub>5</sub> and the low q<sup>2</sup> discrepancy (arXiv:1406.0566)





Summary

# Lepton universality and Z'

FCNC decay searches

#### LHCb-PAPER-2014-024

• If the P'\_5 and the differential decay rates are indeed due to a Z', could proble its couplings to leptons. Lepton universality requires that:

 $B \rightarrow \ell^+ \ell^- K^{(*)}$  decays

$$R_{K} = \frac{\int dB(B^{+} \to K^{+}\mu^{+}\mu^{-})/dq^{2}}{\int dB(B^{+} \to K^{+}e^{+}e^{-})/dq^{2}} = 1 \pm \mathcal{O}(10^{-3})$$

• For the  $e^+e^-$  mode, difficult to determine efficiency due to bremstrahlung.  $\Rightarrow$  Take double ratio with respect to the  $J/\psi \rightarrow \mu^+\mu^-$  and  $J/\psi \rightarrow e^+e^$ modes



| Introduction | FCNC decay searches | $B \rightarrow \ell^+ \ell^- K^{(*)}$ decays | Photon polarization in $b \rightarrow s\gamma$ transition | Summary |
|--------------|---------------------|----------------------------------------------|-----------------------------------------------------------|---------|
|              |                     |                                              |                                                           |         |
|              |                     |                                              |                                                           |         |

# Photon polarization in $b \rightarrow s \gamma$ transition



Introduction

FCNC decay searches

 $B \to \ell^+ \ell^- K^{(*)} decay$ 

## Photon polarization in $B^+ \rightarrow K^+ \pi^- \pi^+ \gamma$

Measure the up-down asymmetry of the photon direction in the frame formed by the two pions

Conceptually similar to the P-parity violation experiment of Wu et. al (1956)



Introduction 0000 FCNC decay searches

*B → ℓ<sup>+</sup>ℓ<sup>-</sup>K<sup>(\*)</sup>decay* 

Photon polarization in  $b \rightarrow s\gamma$  transition Summary  $\circ \bullet \circ$ 

PRL 112 (2014) 161801

### LHCb analysis of $B^+ \rightarrow K^+ \pi^- \pi^+ \gamma$





- Observed over 13000 B<sup>+</sup> signal candidates in 3 fb<sup>-1</sup>
- The analysis is performed in bins of background subtracted m<sub>Kππ</sub>



Fatima Soomro (EPFL)

# IntroductionFCNC decay searches $B \rightarrow \ell^+ \ell^- K^{(*)}$ decaysPhoton polarization in $b \rightarrow s\gamma$ transitionSummary0000000000000000000

### Results

#### PRL 112 (2014) 161801

- Combining the absolute  $A_{ud}$  in the four bins, the photon polarization is observed to be different from zero at  $5.2\sigma$
- Theoretical input required in order to actually measure the value of the polarization and interpret it in terms on NP

First experimental observation of a non-zero photon polarization in  $b \rightarrow s\gamma$  transition!



# Summary

- LHCb is well suited to study rare heavy flavour decays
   ⇒ Large b and c production x-sections, excellent particle identification capability
- Most stringent limits on FCNC decays of up and down type quarks
   ⇒ NP phase space is shrinking rapidly
- B→μ<sup>+</sup>μ<sup>-</sup>K<sup>(\*)</sup> decays show interesting anomalies (P'<sub>5</sub>).
   ⇒ Theoretical interpretation is under way, so is the update of B<sub>d</sub> → K<sup>\*0</sup>μ<sup>+</sup>μ<sup>-</sup> with full statistics
   ⇒ Measurement of the τ couplings of the Z' and analysis of B<sub>s</sub> → φμ<sup>+</sup>μ<sup>-</sup> can shed more light
- LHCb also produced the first ever observation of a non-zero photon polarization in b → sγ decays
   ⇒ Theory input required to actually *measure the value* of the polarization
- Other rare decay results e.g. lepton flavour violation in B and τ decays
   ⇒ Link to LHCb public results page