Measurements of CP violation and mixing in charm decays at LHCb

Michael Alexander on behalf of the LHCb collaboration

University of Glasgow

PANIC14, Hamburg, 26th August 2014

M. Alexander (University of Glasgow)

Mixing and CPV in charm at LHCb

PANIC14 2014/08/26 1 / 30

Outline

Introduction

 $\mathsf{Multi-body}\ D\ \mathsf{decays}$

CP violation in $\mathrm{D}^{\pm}_{(s)} \to \mathrm{K}^{0}_{\mathrm{S}} h^{\pm}$

 $C\!P$ violation in ${\rm D}^0\!\rightarrow {\rm h}^+{\rm h}^{(\prime)-}$

Conclusions

M. Alexander (University of Glasgow)

Outline

Introduction

 ${\sf Multi-body}\ D\ {\sf decays}$

CP violation in $D^{\pm}_{(s)} \rightarrow K^0_S h^{\pm}$

CP violation in $D^0 \rightarrow h^+ h^{(\prime)-}$

Conclusions

M. Alexander (University of Glasgow)

Mixing and CPV in charm at LHCb

PANIC14 2014/08/26 3 / 30

[1] JINST 3 (2008) S08005 [2] arXiv:1405.7808 [3] Eur. Phys. J. C73 (2013) 2431

The LHCb Detector

- Single-arm forward spectrometer with acceptance 2 < η < 5, designed for precision measurement of decays involving b and c quarks^[1].
- Vertex Locator (VELO) provides fine tracking about the interaction point, achieving impact parameter (IP) resolutions of ~20 μm for tracks with $p_T > 1 \, \mathrm{GeV}^{[2]}$.
- Two Ring Imaging Cherenkov (RICH) detectors provide particle identification, with excellent separation of π and K over a wide momentum range^[3].

M. Alexander (University of Glasgow)

[4] Nucl. Phys. B 871(2013), 1

Data

- Recorded 1.1 fb⁻¹ at $\sqrt{s} = 7$ TeV in 2011 and 2.1 fb⁻¹ at $\sqrt{s} = 8$ TeV in 2012.
- Huge $c\overline{c}$ production cross-section (1419 ± 133 µb at $\sqrt{s} = 7$ TeV ^[4]) yields largest data sets of charm meson decays in the world.

M. Alexander (University of Glasgow)

Mixing and CP violation formalism

• For a decay $D \rightarrow f$ and its *CP* conjugate $\overline{D} \rightarrow \overline{f}$, with amplitudes A_f and $\overline{A}_{\overline{f}}$ respectively, direct *CP* violation is quantified by:

$$A_d = rac{|A_f|^2 - |ar{A}_{ar{f}}|^2}{|A_f|^2 + |ar{A}_{ar{f}}|^2}.$$

• For D⁰, the mass eigenstates $|D_{1,2}\rangle$, with masses $m_{1,2}$ and widths $\Gamma_{1,2}$, are given by: $|D_{1,2}\rangle = r|D_{1,2}\rangle + r|D_{1,2}\rangle$

$$|\mathrm{D}_{1,2}\rangle = p|\mathrm{D}^0\rangle \pm q|\overline{\mathrm{D}}^0\rangle,$$

with p and q complex, satisfying $|p|^2 + |q|^2 = 1$.

• The rate of mixing is quantified by

$$x \equiv 2(m_2 - m_1)/(\Gamma_1 + \Gamma_2)$$
 and $y \equiv (\Gamma_2 - \Gamma_1)/(\Gamma_1 + \Gamma_2)$.

• CP violation in mixing is quantified by $A_m \equiv (|q/p|^2 - |p/q|^2)/(|q/p|^2 + |p/q|^2),$

and in interference between mixing and decay (when $f = \overline{f}$) by $\lambda_f \equiv q\overline{A}_f/pA_f = |q\overline{A}_f/pA_f| e^{i\phi}$.

• *CP* violation in charm is predicted to be very small in the Standard Model - observation of significant *CP* violation could indicate new physics.

M. Alexander (University of Glasgow)

D⁰ flavour tagging

• Flavour of D⁰ at production can be determined using:

- "Prompt" $D^{*+} \rightarrow D^0 \pi_s^+$, with D^{*+} produced directly from the p-p collision D^0 IP w.r.t. primary vertex (PV) consistent with zero.
- "Secondary" $B \rightarrow D^0 \mu^- X$ D^0 IP w.r.t. PV significantly non-zero.

M. Alexander (University of Glasgow)

 $\mathsf{Multi-body}\ D \ \mathsf{decays}$

Outline

Introduction

 $\mathsf{Multi-body}\ D\ \mathsf{decays}$

CP violation in $\mathrm{D}^{\pm}_{(s)} \to \mathrm{K}^{0}_{\mathrm{S}} h^{\pm}$

CP violation in $D^0 \rightarrow h^+ h^{(\prime)-}$

Conclusions

M. Alexander (University of Glasgow)

Mixing and CPV in charm at LHCb

PANIC14 2014/08/26 8 / 30

T-odd correlations in $D^0 \rightarrow K^+ K^- \pi^+ \pi^-$

- Multi-body decays give sensitivity to *CP* violation due to interference between resonance structures in different phase space regions.
- In D⁰→ K⁺K⁻π⁺π⁻, triple products of final state particle momenta in D⁰ rest frame are odd under *T*:

$$egin{aligned} \mathcal{C}_{\mathcal{T}} &\equiv ec{p}_{\mathrm{K}^+} \cdot \left(ec{p}_{\pi^+} imes ec{p}_{\pi^-}
ight), ext{ for } \mathrm{D}^0, \ ar{\mathcal{C}}_{\mathcal{T}} &\equiv ec{p}_{\mathrm{K}^-} \cdot \left(ec{p}_{\pi^-} imes ec{p}_{\pi^+}
ight), ext{ for } \overline{\mathrm{D}}^0. \end{aligned}$$

• *T*-odd observables are then sensitive to *CP* violation:

$$A_{T} \equiv \frac{\Gamma(C_{T} > 0) - \Gamma(C_{T} < 0)}{\Gamma(C_{T} > 0) + \Gamma(C_{T} < 0)}, \quad \bar{A}_{T} \equiv \frac{\Gamma(-\bar{C}_{T} > 0) - \Gamma(-\bar{C}_{T} < 0)}{\Gamma(-\bar{C}_{T} > 0) + \Gamma(-\bar{C}_{T} < 0)}$$

• Final state interactions introduce significant asymmetries, so are cancelled in the difference to access the D^0 CP asymmetry

$$a_{CP}^{T\text{-odd}} \equiv \frac{1}{2}(A_T - \bar{A}_T).$$

• By definition insensitive to production and detection asymmetries.

M. Alexander (University of Glasgow)

 $\mathsf{Multi-body} \ D \ \mathsf{decays}$

T-odd correlations in $D^0 \rightarrow K^+ K^- \pi^+ \pi^-$ (II)

- 171k $D^0 \rightarrow K^+K^-\pi^+\pi^$ candidates, tagged using $B \rightarrow D^0\mu^-X$, selected from 3 fb⁻¹ of data.
- Fits to m(K⁺K⁻π⁺π⁻) distributions directly yield asymmetries using:

$$egin{aligned} &\mathcal{N}_{\mathrm{D}^{0},\mathcal{C}_{\mathcal{T}}>0}=rac{1}{2}\mathcal{N}_{\mathrm{D}^{0}}(1+\mathcal{A}_{\mathcal{T}}),\ &\mathcal{N}_{\mathrm{D}^{0},\mathcal{C}_{\mathcal{T}}<0}=rac{1}{2}\mathcal{N}_{\mathrm{D}^{0}}(1-\mathcal{A}_{\mathcal{T}}),\ &\mathcal{N}_{ar{\mathrm{D}}^{0},-ar{\mathcal{C}}_{\mathcal{T}}>0}=rac{1}{2}\mathcal{N}_{ar{\mathrm{D}}^{0}}(1+ar{\mathcal{A}}_{\mathcal{T}}),\ &\mathcal{N}_{ar{\mathrm{D}}^{0},-ar{\mathcal{C}}_{\mathcal{T}}<0}=rac{1}{2}\mathcal{N}_{ar{\mathrm{D}}^{0}}(1-ar{\mathcal{A}}_{\mathcal{T}}). \end{aligned}$$

 $\mathsf{Multi-body} \ D \ \mathsf{decays}$

[5] LHCb-PAPER-2014-046 [6] HFAG

T-odd correlations in $D^0 \rightarrow K^+ K^- \pi^+ \pi^-$ (III)

• Phase space integrated fits yield

$$egin{aligned} &A_{\mathcal{T}} = (-7.18 \pm 0.41(ext{stat}) \pm 0.13(ext{syst}))\%, \ &ar{A}_{\mathcal{T}} = (-7.55 \pm 0.41(ext{stat}) \pm 0.12(ext{syst}))\%, \ &a_{CP}^{ ext{T-odd}} = (0.18 \pm 0.29(ext{stat}) \pm 0.04(ext{syst}))\%. \end{aligned}$$

• cf. current world average: $a_{CP}^{T\text{-odd}} = (0.11 \pm 0.67)\%^{[6]}$.

M. Alexander (University of Glasgow)

Mixing and CPV in charm at LHCb

PANIC14 2014/08/26 11 / 30

T-odd correlations in $D^0 \rightarrow K^+ K^- \pi^+ \pi^-$ (IV)

• Asymmetries also measured in 32 bins of Cabibbo-Maksimowicz phase space variables: $m_{\pi^+\pi^-}^2$, $m_{K^+K^-}^2$, $\cos(\theta_{\pi})$, $\cos(\theta_{K})$ and ϕ .

- χ^2 test for consistency with no *CP* violation across phase space yields *p*-value of 74 %.
- Similarly, binning in D⁰ decay time yields a *p*-value for consistency with no indirect *CP* violation of 72 %.
- Thus, no evidence for CP violation is seen.

M. Alexander (University of Glasgow)

Search for *CP* asymmetries across multi-body phase spaces

• "Miranda" method examines the significance of *CP* asymmetries across bins of phase space using:

$$S_{CP}^{i} \equiv rac{N_{i}(\mathrm{D}^{0}) - \alpha N_{i}(\overline{\mathrm{D}}^{0})}{\sqrt{\alpha(N_{i}(\mathrm{D}^{0}) + N_{i}(\overline{\mathrm{D}}^{0}))}}, \ \alpha \equiv rac{N(\mathrm{D}^{0})}{N(\overline{\mathrm{D}}^{0})}.$$

- N_i is the number of D^0 in bin *i*, and α cancels any global production and detection asymmetries.
- A χ^2 test for consistency with zero *CP* violation is then performed, with $\chi^2 = \sum_i S_{CP}^i{}^2$ and $N_{bins} 1$ degrees of freedom.
- Complementary to *T*-odd method as $a_{CP}^{T-\text{odd}} \propto \sin(\phi) \cos(\delta)$ while $S_{CP} \propto \sin(\phi) \sin(\delta)$, with ϕ the weak phase and δ the strong phase of the interfering amplitudes.

Miranda analysis in $D^0\!\to K^+\!K^-\pi^+\pi^-$ and $D^0\!\to\pi^+\pi^-\pi^+\pi^-$

- 57k ${\rm D}^0 \rightarrow {\rm K}^+ {\rm K}^- \pi^+ \pi^-$ and 330k ${\rm D}^0 \rightarrow \pi^+ \pi^- \pi^+ \pi^-$ candidates, tagged using ${\rm D}^{*+} \rightarrow {\rm D}^0 \pi_s^+$, selected from 1 fb⁻¹ 2011 data.
- Distributions of m(hhhh) and $\Delta m \equiv m(D^{*+}) m(D^0)$ fitted to determine yields.
- Nominal binning schema yields *p*-value of consistency with zero *CP* violation of 9.1 % (41 %) for $D^0 \rightarrow K^+K^-\pi^+\pi^-$ ($D^0 \rightarrow \pi^+\pi^-\pi^+\pi^-$).
- Cross checked using $D^0 \to K^-\pi^+\pi^+\pi^-$ and various different binning schema.

Miranda analysis in $D^+ \rightarrow \pi^- \pi^+ \pi^+$

- 3.1M prompt ${\rm D}^+ \! \to \pi^- \pi^+ \pi^+$ candidates selected from 1 fb^{-1} 2011 data.
- Distribution of $m(\pi^-\pi^+\pi^+)$ fitted to determine signal yield.
- Various binning schema used, as well as an unbinned technique to measure *CP* asymmetries, all yielding *p*-values for consistency with zero *CP* violation > 20%.
- Cross checked with CF $\mathrm{D}^+_s
 ightarrow \pi^-\pi^+\pi^+$.

CP violation in $D^{\pm}_{(s)} \to K^0_S h^{\pm}$

Outline

Introduction

 ${\sf Multi-body}\ D\ {\sf decays}$

CP violation in $\mathrm{D}^{\pm}_{(s)} \to \mathrm{K}^{0}_{\mathrm{S}} h^{\pm}$

CP violation in $D^0 \rightarrow h^+ h^{(\prime)-}$

Conclusions

M. Alexander (University of Glasgow)

Mixing and CPV in charm at LHCb

PANIC14 2014/08/26 16 / 30

CP violation in $D^{\pm}_{(s)} \rightarrow K^0_S h^{\pm}$ [9] LHCb-PAPER-2014-018

CP violation in $D^{\pm} \rightarrow K^0_s K^{\pm}$ and $D^{\pm}_s \rightarrow K^0_s \pi^{\pm}$

• CP asymmetry and measured asymmetry defined as:

$$\begin{split} \mathcal{A}_{CP}^{\mathrm{D}_{(\mathrm{s})}^{\pm} \rightarrow \mathrm{K}_{\mathrm{S}}^{0} h^{\pm}} &\equiv \frac{\Gamma(\mathrm{D}_{(\mathrm{s})}^{+} \rightarrow \mathrm{K}_{\mathrm{S}}^{0} h^{+}) - \Gamma(\mathrm{D}_{(\mathrm{s})}^{-} \rightarrow \mathrm{K}_{\mathrm{S}}^{0} h^{-})}{\Gamma(\mathrm{D}_{(\mathrm{s})}^{+} \rightarrow \mathrm{K}_{\mathrm{S}}^{0} h^{+}) + \Gamma(\mathrm{D}_{(\mathrm{s})}^{-} \rightarrow \mathrm{K}_{\mathrm{S}}^{0} h^{-})}, \\ \mathcal{A}_{\mathrm{meas}}^{\mathrm{D}_{(\mathrm{s})}^{\pm} \rightarrow \mathrm{K}_{\mathrm{S}}^{0} h^{\pm}} &\equiv \frac{N_{\mathrm{sig}}^{\mathrm{D}_{(\mathrm{s})}^{+} \rightarrow \mathrm{K}_{\mathrm{S}}^{0} h^{+}} - N_{\mathrm{sig}}^{\mathrm{D}_{(\mathrm{s})}^{-} \rightarrow \mathrm{K}_{\mathrm{S}}^{0} h^{-}}}{N_{\mathrm{sig}}^{\mathrm{D}_{(\mathrm{s})}^{+} \rightarrow \mathrm{K}_{\mathrm{S}}^{0} h^{+}} + N_{\mathrm{sig}}^{\mathrm{D}_{(\mathrm{s})}^{-} \rightarrow \mathrm{K}_{\mathrm{S}}^{0} h^{-}}} \\ &\simeq \mathcal{A}_{CP}^{\mathrm{D}_{(\mathrm{s})}^{\pm} \rightarrow \mathrm{K}_{\mathrm{S}}^{0} h^{\pm}} + \mathcal{A}_{\mathrm{prod}}^{\mathrm{D}_{(\mathrm{s})}^{\pm}} + \mathcal{A}_{\mathrm{det}}^{h^{\pm}} + \mathcal{A}_{\mathrm{K}_{\mathrm{S}}^{0}}. \end{split}$$

• $\mathcal{A}_{\text{prod}}^{D_{(s)}^{\pm}}$ is the production asymmetry of the $D_{(s)}^{\pm}$, $\mathcal{A}_{\text{det}}^{h^{\pm}}$ the detection asymmetry of the h^{\pm} , and $\mathcal{A}_{K_{S}^{0}}$ is the combined detection and *CP* asymmetry of the K_{S}^{0} .

M. Alexander (University of Glasgow)

Mixing and CPV in charm at LHCb

PANIC14 2014/08/26 17 / 30

CP violation in $D_{(s)}^{\pm} \to K_{S}^{0} h^{\pm}$ [9] LHCb-PAPER-2014-018

CP violation in $D^{\pm} \rightarrow K^0_s K^{\pm}$ and $D^{\pm}_s \rightarrow K^0_s \pi^{\pm}$ (II)

• Assuming negligible *CP* violation in Cabibbo-favoured decays $D_s^{\pm} \rightarrow K_s^0 K^{\pm}$, $D^{\pm} \rightarrow K_s^0 \pi^{\pm}$ and $D_s^{\pm} \rightarrow \phi \pi^{\pm}$, can define double difference:

$$\begin{split} \mathcal{A}_{CP}^{DD} &\equiv \left[\mathcal{A}_{\text{meas}}^{\mathrm{D}^{\pm}_{S} \to \mathrm{K}^{0}_{S} \pi^{\pm}} - \mathcal{A}_{\text{meas}}^{\mathrm{D}^{\pm}_{S} \to \mathrm{K}^{0}_{S} \mathrm{K}^{\pm}}\right] - \left[\mathcal{A}_{\text{meas}}^{\mathrm{D}^{\pm} \to \mathrm{K}^{0}_{S} \pi^{\pm}} - \mathcal{A}_{\text{meas}}^{\mathrm{D}^{\pm} \to \mathrm{K}^{0}_{S} \mathrm{K}^{\pm}}\right] - 2\mathcal{A}_{\mathrm{K}^{0}_{S}}, \\ &= \mathcal{A}_{CP}^{\mathrm{D}^{\pm} \to \mathrm{K}^{0}_{S} \mathrm{K}^{\pm}} + \mathcal{A}_{CP}^{\mathrm{D}^{\pm}_{S} \to \mathrm{K}^{0}_{S} \pi^{\pm}}. \end{split}$$

- Production and detection asymmetries cancel, and $\mathcal{A}_{K^0_\alpha}$ is known.
- Similarly, individual asymmetries can be accessed:

$$\begin{split} \mathcal{A}_{CP}^{\mathrm{D}^{\pm}\rightarrow\mathrm{K}^{0}_{\mathrm{S}}\mathrm{K}^{\pm}} &= \left[\mathcal{A}_{\mathrm{meas}}^{\mathrm{D}^{\pm}\rightarrow\mathrm{K}^{0}_{\mathrm{S}}\mathrm{K}^{\pm}} - \mathcal{A}_{\mathrm{meas}}^{\mathrm{D}^{\pm}_{\mathrm{s}}\rightarrow\mathrm{K}^{0}_{\mathrm{S}}\mathrm{K}^{\pm}}\right] - \left[\mathcal{A}_{\mathrm{meas}}^{\mathrm{D}^{\pm}\rightarrow\mathrm{K}^{0}_{\mathrm{S}}\pi^{\pm}} - \mathcal{A}_{\mathrm{meas}}^{\mathrm{D}^{\pm}_{\mathrm{s}}\rightarrow\mathrm{K}^{0}_{\mathrm{S}}\pi^{\pm}}\right] - \mathcal{A}_{\mathrm{K}^{0}_{\mathrm{S}}},\\ \mathcal{A}_{CP}^{\mathrm{D}^{\pm}_{\mathrm{s}}\rightarrow\mathrm{K}^{0}_{\mathrm{S}}\pi^{\pm}} &= \mathcal{A}_{\mathrm{meas}}^{\mathrm{D}^{\pm}_{\mathrm{s}}\rightarrow\mathrm{K}^{0}_{\mathrm{S}}\pi^{\pm}} - \mathcal{A}_{\mathrm{meas}}^{\mathrm{D}^{\pm}_{\mathrm{s}}\rightarrow\mathrm{\Phi}\pi^{\pm}} - \mathcal{A}_{\mathrm{K}^{0}_{\mathrm{S}}}. \end{split}$$

M. Alexander (University of Glasgow)

- 1.0M prompt $D^\pm \to K^0_{\rm S} K^\pm$ and 121k prompt $D^\pm_s \to K^0_{\rm S} \pi^\pm$ candidates selected from 3 fb⁻¹ data.
- Fit $m(D_{(s)}^{\pm})$ distributions to obtain signal yields, giving:

$$\begin{split} \mathcal{A}_{CP}^{D^{\pm} \to K_{\rm S}^{0} {\rm K}^{\pm}} &+ \mathcal{A}_{CP}^{D^{\pm}_{\pm} \to K_{\rm S}^{0} \pi^{\pm}} = (+0.41 \pm 0.49 ({\rm stat}) \pm 0.26 ({\rm syst}))\%, \\ \mathcal{A}_{CP}^{D^{\pm} \to K_{\rm S}^{0} {\rm K}^{\pm}} &= (+0.03 \pm 0.17 ({\rm stat}) \pm 0.14 ({\rm syst}))\%, \\ \mathcal{A}_{CP}^{D^{\pm}_{\pm} \to K_{\rm S}^{0} \pi^{\pm}} &= (+0.38 \pm 0.46 ({\rm stat}) \pm 0.17 ({\rm syst}))\%. \end{split}$$

• Most precise measurements to date, but no indication of CP violation.

Outline

Introduction

Multi-body D decays

CP violation in $D^{\pm}_{(s)} \rightarrow K^0_S h^{\pm}$

 $C\!P$ violation in ${\rm D}^0\!\rightarrow {\rm h}^+{\rm h}^{(\prime)-}$

Conclusions

M. Alexander (University of Glasgow)

Mixing and CPV in charm at LHCb

PANIC14 2014/08/26 20 / 30

[10] J. High Energy Phys. 07 (2014) 014

Direct CP violation in $D^0 \rightarrow h^+h^-$

- Using $B \to D^0 \mu^- X$ tagged $D^0 \to h^+ h^-$, the measured *CP* asymmetry is: $\mathcal{A}_{meas}^{D^0 \to h^+ h^-} = \mathcal{A}_{CP}^{D^0 \to h^+ h^-} + \mathcal{A}_{det}^{\mu^{\pm}} + \mathcal{A}_{prod}^B$.
- No detection asymmetry for $K^+\!K^-$ and $\pi^+\pi^-$ final states.
- Taking difference of measured asymmetries, B production and μ detection asymmetries cancel:

$$\Delta \mathcal{A}_{CP} \equiv \mathcal{A}_{\text{meas}}^{\mathrm{D}^{0} \rightarrow \mathrm{K}^{+}\mathrm{K}^{-}} - \mathcal{A}_{\text{meas}}^{\mathrm{D}^{0} \rightarrow \pi^{+}\pi^{-}} = \mathcal{A}_{CP}^{\mathrm{D}^{0} \rightarrow \mathrm{K}^{+}\mathrm{K}^{-}} - \mathcal{A}_{CP}^{\mathrm{D}^{0} \rightarrow \pi^{+}\pi^{-}}.$$

• Assuming CP violation is negligible in $D^0 \rightarrow K^- \pi^+$ it can be used to cancel nuisance asymmetries and access individual CP asymmetries:

$$\begin{split} \mathcal{A}_{CP}^{\mathrm{D}^{0} \rightarrow \mathrm{K}^{+}\mathrm{K}^{-}} &= \mathcal{A}_{\mathrm{meas}}^{\mathrm{D}^{0} \rightarrow \mathrm{K}^{+}\mathrm{K}^{-}} - \mathcal{A}_{\mathrm{meas}}^{\mathrm{D}^{0} \rightarrow \mathrm{K}^{-}\pi^{+}} + \mathcal{A}_{\mathrm{det}}^{\mathrm{K}^{\mp}\pi^{\pm}}, \\ \mathcal{A}_{CP}^{\mathrm{D}^{0} \rightarrow \pi^{+}\pi^{-}} &= \mathcal{A}_{CP}^{\mathrm{D}^{0} \rightarrow \mathrm{K}^{+}\mathrm{K}^{-}} - \Delta \mathcal{A}_{CP}. \end{split}$$

• $\mathcal{A}_{det}^{K^{\mp}\pi^{\pm}}$ is determined from prompt $D^{+} \rightarrow K^{-}\pi^{+}\pi^{+}$ and $D^{+} \rightarrow K_{s}^{0}\pi^{+}$ decays, and the known $\mathcal{A}_{K_{s}^{0}}$.

M. Alexander (University of Glasgow)

[10] J. High Energy Phys. 07 (2014) 014

Direct *CP* violation in $D^0 \rightarrow h^+h^-$ (II)

• From 3 fb^{-1} data select 2.2M $\rm D^0 \,{\to}\, K^+K^-$ and 770k $\rm D^0 \,{\to}\, \pi^+\pi^-$ candidates, yielding:

$$\begin{split} &\Delta\mathcal{A}_{CP} = (+0.14 \pm 0.16(\text{stat}) \pm 0.08(\text{syst}))\%, \\ &\mathcal{A}_{CP}^{\text{D}^0 \to \text{K}^+\text{K}^-} = (-0.06 \pm 0.15(\text{stat}) \pm 0.10(\text{syst}))\%, \\ &\mathcal{A}_{CP}^{\text{D}^0 \to \pi^+\pi^-} = (-0.20 \pm 0.19(\text{stat}) \pm 0.10(\text{syst}))\%. \end{split}$$

Most accurate measurements to date, no indication of *CP* violation.
 ΔA_{CP} and A^{D⁰→K⁺K⁻} are 28 % correlated.

M. Alexander (University of Glasgow)

[11] A. Carbone, Beauty14

World average direct *CP* violation in $D^0 \rightarrow h^+h^-$

• New world averages dominated by LHCb measurements: $\mathcal{A}_{CP}^{D^0 \to K^+K^-} = (-0.15 \pm 0.11)\%, \quad \mathcal{A}_{CP}^{D^0 \to \pi^+\pi^-} = (+0.10 \pm 0.12)\%,$ $\Delta \mathcal{A}_{CP} = (-0.25 \pm 0.11)\%.$

M. Alexander (University of Glasgow)

[12] Phys. Rev. Lett. 112 (2014) 041801

Indirect *CP* violation in $D^0 \rightarrow h^+h^-$

• Using $D^{*+} \rightarrow D^0 \pi_s^+$ tagged $D^0 \rightarrow K^+ K^-$ and $D^0 \rightarrow \pi^+ \pi^-$ measure asymmetry in effective lifetime:

$$A_{\Gamma} \equiv \frac{\hat{\Gamma}(D^{0} \to f) - \hat{\Gamma}(\overline{D^{0}} \to f)}{\hat{\Gamma}(D^{0} \to f) + \hat{\Gamma}(\overline{D^{0}} \to f)} \approx \eta_{CP} \left[\frac{1}{2}(A_{m} + A_{d})y\cos\phi - x\sin\phi\right]$$

- $\hat{\Gamma}$ is the inverse of the effective lifetime of the decay, and η_{CP} is the *CP* eigenvalue of *f*.
- $\hat{\Gamma}$ measured directly using data-driven, per-candidate correction for selection efficiency.

[12] Phys. Rev. Lett. 112 (2014) 041801 [6] HFAG

Indirect *CP* violation in $D^0 \rightarrow h^+h^-$ (II)

• Using 1 fb $^{-1}$ 2011 data 1.5M $\pi\pi$ and 4.8M $\rm KK$ candidates are selected, yielding:

$$egin{aligned} & {\cal A}_{\Gamma}(\pi\pi) = & (0.033\pm 0.106({
m stat})\pm 0.014({
m syst}))\%, \ & {\cal A}_{\Gamma}({
m KK}) = (-0.035\pm 0.062({
m stat})\pm 0.012({
m syst}))\%. \end{aligned}$$

• World average:

$$-A_{\Gamma}\simeq a_{CP}^{
m ind}=(0.013\pm 0.052)\%.$$

• Combined fit with direct *CP* violation measurements yields *p*-value for zero *CP* violation of 5.1 %.

Mixing and *CP* violation in $D^0 \rightarrow K^+ \pi^-$

• Ratio of DCS "wrong sign" (WS) $D^0 \rightarrow K^+\pi^-$ to CF "right sign" (RS) $D^0 \rightarrow K^-\pi^+$ decay rates vs decay time give access to mixing parameters (assuming no CPV):

$$R(t) = rac{N_{WS}(t)}{N_{RS}(t)} = R_D + \sqrt{R_D}y't + rac{x'^2 + y'^2}{4}t^2.$$

where:

$$R_D = \left| \frac{A_{DCS}}{A_{CF}} \right|^2, \ x' = x \cos(\delta) + y \sin(\delta),$$

$$y' = -x \sin(\delta) + y \cos(\delta), \ \delta = \arg\left(\frac{A_{DCS}}{A_{CF}}\right).$$

- Analysing D^0 and $\overline{\mathrm{D}}{}^0$ separately gives sensitivity to CPV.
- Using $D^{*+} \rightarrow D^0 \pi_s^+$ tagged candidates, fits to the distributions of $m(D^{*+})$ in bins of D^0 decay time determine R(t).

M. Alexander (University of Glasgow)

[13] Phys. Rev. Lett. 111 (2013) 251801 [6] HFAG

27 / 30

Mixing and *CP* violation in $D^0 \rightarrow K^+\pi^-$ (II)

• Using 3 fb⁻¹ data, a yield of 229K signal WS candidates is determined. Assuming zero *CP* violation gives:

$$x'^2 = (5.5 \pm 4.9) \times 10^{-5}, y' = (4.8 \pm 1.0) \times 10^{-3},$$

 $R_D = (3.568 \pm 0.066) \times 10^{-3}.$

• Allowing for CP violation yields:

$$egin{aligned} \mathcal{A}_D &\equiv (\mathcal{R}_D(\mathrm{D}^0) - \mathcal{R}_D(\overline{\mathrm{D}}^0)) / (\mathcal{R}_D(\mathrm{D}^0) - \mathcal{R}_D(\overline{\mathrm{D}}^0)) = (-0.7 \pm 1.9)\%, \ 0.75 < |q/p| < 1.24, (68.3 \ \% \ \mathrm{CL}). \end{aligned}$$

• Assuming no *CP* violation in DCS decays $(A_D = 0)$ yields much tighter constraints on |q/p| in combined fits^[6].

World average mixing and indirect CP violation

- WS $D^0 \rightarrow K^+\pi^-$ measurements contribute to constraints on y and |q/p|, and to a lesser extent x and Arg(q/p).
- |q/p| and $\operatorname{Arg}(q/p)$ also constrained by A_{Γ} measurements.
- No evidence for indirect CP violation.

M. Alexander (University of Glasgow)

Conclusions

Outline

Introduction

Multi-body D decays

CP violation in $D^{\pm}_{(s)} \rightarrow K^0_S h^{\pm}$

CP violation in $D^0 \rightarrow h^+ h^{(\prime)-}$

Conclusions

M. Alexander (University of Glasgow)

Mixing and CPV in charm at LHCb

PANIC14 2014/08/26 29 / 30

Conclusions

Conclusions

- Rich charm physics programme at LHCb, yielding world best measurements of *CP* violation and mixing in many decay modes.
 - Complementary searches using *T*-odd observables and Miranda method in $D^0 \rightarrow K^+K^-\pi^+\pi^-$, $D^0 \rightarrow \pi^+\pi^-\pi^+\pi^-$ and $D^+ \rightarrow \pi^-\pi^+\pi^+$.
 - Direct *CP* violation in $D^{\pm}_{(s)} \to K^0_{s} h^{\pm}$ and $D^0 \to h^+ h^-$.
 - Indirect CP violation using ${\rm D}^0 \! \rightarrow {\rm h}^+ {\rm h}^-.$
 - Mixing and CP violation using WS ${\rm D}^{0}\!\rightarrow {\rm K}^{+}\pi^{-}.$
- Precision on D^{0} mixing parameters significantly improved.
- No evidence for direct or indirect CP violation, but constraints of $\mathcal{O}(10^{-3})$ made in several modes.
- With some analyses still to add 2 fb⁻¹ recorded in 2012, run II approaching, and the LHCb upgrade on the horizon, LHCb will continue to dominate the landscape of charm physics for several years to come.
- Potential to probe down to $\mathcal{O}(10^{-4})$ and further constrain (or discover!) new physics.

M. Alexander (University of Glasgow)

Backup

Mixing and CPV in charm at LHCb

PANIC14 2014/08/26 31 / 30

T-odd correlations, systematics

Contribution	$\Delta A_T(\%)$	$\Delta \overline{A}_T(\%)$	$\Delta a_{CP}^{T ext{-odd}}(\%)$
Prompt background	± 0.09	± 0.08	± 0.00
Detector bias	± 0.04	± 0.04	± 0.04
C_T resolution	± 0.02	± 0.03	± 0.01
Fit model	± 0.01	± 0.01	± 0.01
Flavour misidentification	± 0.08	± 0.07	± 0.00
Total	± 0.13	± 0.12	± 0.04

M. Alexander (University of Glasgow)

Mixing and CPV in charm at LHCb

PANIC14 2014/08/26 32 / 30

CP violation in $D^{\pm} \rightarrow K^0_s K^{\pm}$ and $D^{\pm}_s \rightarrow K^0_s \pi^{\pm}$, systematics

	$\sqrt{s} = 7 \text{ TeV}$			$\sqrt{s} = 8 \text{ TeV}$		
Source	$\mathcal{A}_{CP}^{\mathcal{DD}}$	$\mathcal{A}_{C\!P}^{D^\pm o K^0_{ m S}K^\pm}$	$\mathcal{A}_{CP}^{D_s^\pm ightarrow K_{ m S}^0 \pi^\pm}$	$\mathcal{A}_{CP}^{\mathcal{DD}}$	$\mathcal{A}_{C\!P}^{D^\pm o K^0_{ m S}K^\pm}$	$\mathcal{A}_{CP}^{D_s^\pm o K_{ m S}^0 \pi^\pm}$
Fit procedure	0.14	0.09	0.11	0.07	0.05	0.01
Cross-feed bkgd.	0.03	0.01	0.02	0.01	_	0.01
Non-prompt charm	0.01	_	_	0.01	_	_
Kinematic weighting	0.08	0.06	0.13	0.05	0.07	0.12
Kinematic region	0.10	0.06	0.04	0.19	0.02	0.17
Trigger	0.13	0.13	0.07	0.17	0.17	0.09
K^0 asymmetry	0.03	0.02	0.02	0.04	0.02	0.02
Total	0.23	0.18	0.19	0.27	0.19	0.22

M. Alexander (University of Glasgow)

Mixing and CPV in charm at LHCb

PANIC14 2014/08/26 33 / 30

Direct *CP* violation in $D^0 \rightarrow h^+h^-$, systematics

Source of uncertainty	ΔA_{CP}	$A_{CP}(K^-K^+)$		
Production asymmetry:				
Difference in <i>b</i> -hadron mixture	0.02%	0.02%		
Difference in B decay time acceptance	0.02%	0.02%		
Production and detection asymmetry:				
Different weighting	0.02%	0.05%		
Non-cancellation	-	0.03%		
Neutral kaon asymmetry	-	0.01%		
Background from real D^0 mesons:				
Mistag asymmetry	0.03%	0.03%		
Background from fake D^0 mesons:				
$D^{\widetilde{0}}$ mass fit model	0.06%	0.06%		
Wrong background modelling	0.03%	0.03%		
Quadratic sum	0.08%	0.10%		

M. Alexander (University of Glasgow)

Indirect *CP* violation in $D^0 \rightarrow h^+h^-$, systematics

• Complementary binned fit method yields:

$$\begin{split} &A_{\Gamma}(\pi\pi) = (0.085\pm 0.122(\text{stat})\pm 0.113(\text{syst}))\%, \\ &A_{\Gamma}(\text{KK}) = (0.050\pm 0.065(\text{stat})\pm 0.089(\text{syst}))\%. \end{split}$$

- Main systematic from difference in magnet polarities, and background modelling.
- Main systematics for unbinned method from modelling of D^0 from B decays, and decay-time acceptance correction.

Source	$A_{\Gamma}^{\mathrm{unb}}(KK)$	$A_{\Gamma}^{\mathrm{bin}}(KK)$	$A_{\Gamma}^{ m unb}(\pi\pi)$	$A_\Gamma^{ m bin}(\pi\pi)$
Partially reconstructed backgrounds	±0.02	±0.09	± 0.00	± 0.00
Charm from b decays	± 0.07	± 0.55	± 0.07	± 0.53
Other backgrounds	± 0.02	± 0.40	± 0.04	± 0.57
Acceptance function	± 0.09		± 0.11	
Magnet polarity		± 0.58		± 0.82
Total systematic uncertainty	±0.12	±0.89	±0.14	±1.13

M. Alexander (University of Glasgow)

Mixing and CP violation in ${\rm D}^0 \! \to {\rm K}^+ \pi^-,$ complete results and systematics

Parameter	Value
Direct and indirect CP violation	
R_D^+ (10 ⁻³)	$3.545 \pm 0.082 \pm 0.048$
y^{+} (10 ⁻³)	$5.1 \pm 1.2 \pm 0.7$
$x^{\prime 2+}$ (10 ⁻⁵)	$4.9 \pm 6.0 \pm 3.6$
$R_D^-(10^{-3})$	$3.591 \pm 0.081 \pm 0.048$
$y'^{-}(10^{-3})$	$4.5 \pm 1.2 \pm 0.7$
$x^{2-}(10^{-5})$	$6.0 \pm 5.8 \pm 3.6$
χ^2/ndf	85.9/98
No direct CP violation	
$R_D (10^{-3})$	$3.568 \pm 0.058 \pm 0.033$
y'^+ (10 ⁻³)	$4.8 \pm 0.9 \pm 0.6$
$x^{\prime 2+}$ (10 ⁻⁵)	$6.4 \pm 4.7 \pm 3.0$
$y'^{-}(10^{-3})$	$4.8 \pm 0.9 \pm 0.6$
$x^{2-}(10^{-5})$	$4.6 \pm 4.6 \pm 3.0$
χ^2/ndf	86.0/99
No CP violation	
$R_D (10^{-3})$	$3.568 \pm 0.058 \pm 0.033$
$y'(10^{-3})$	$4.8 \pm 0.8 \pm 0.5$
$x^{\prime 2}$ (10 ⁻⁵)	$5.5 \pm 4.2 \pm 2.6$
χ^2/ndf	86.4/101

• Systematics include:

- Uncertainty on the fraction of D^0 produced in $B \rightarrow D^0 \mu^- X \text{ and the}$ resulting bias on the measured D^0 decay time.
- Uncertainty on the fraction of peaking background.
- Uncertainty on the measurement of the instrumental asymmetry.

Evolution of CP violation measurements

M. Alexander (University of Glasgow)

Evolution of mixing and CP violation parameters

M. Alexander (University of Glasgow)

Mixing and CPV in charm at LHCb

PANIC14 2014/08/26 38 / 30

Mixing and CP violation averages

Parameter	No CPV	No direct CPV	CPV-allowed	CPV-allowed
		in DCS decays		95% CL Interval
x (%)	$0.49{}^{+0.14}_{-0.15}$	$0.43^{+0.14}_{-0.15}$	$0.41^{+0.14}_{-0.15}$	[0.11, 0.68]
y (%)	0.62 ± 0.08	$0.60\ \pm 0.07$	$0.63 \ ^{+0.07}_{-0.08}$	[0.47, 0.76]
$\delta_{K\pi} ~(^\circ)$	$7.8{}^{+9.6}_{-11.1}$	$4.6^{+10.3}_{-12.0}$	$7.3^{+9.8}_{-11.5}$	[-18.5, 25.8]
$R_D~(\%)$	0.350 ± 0.004	0.349 ± 0.004	0.349 ± 0.004	[0.342, 0.356]
A_D (%)	_	_	$-0.71^{+0.92}_{-0.95}$	[-2.6, 1.1]
q/p	_	$1.007^{+0.015}_{-0.014}$	$0.93^{+0.09}_{-0.08}$	[0.79, 1.12]
ϕ (°)	_	$-0.30^{+0.58}_{-0.60}$	$-8.7^{+8.7}_{-9.1}$	[-26.9, 8.6]
$\delta_{K\pi\pi}~(^\circ)$	$18.7^{+23.2}_{-23.7}$	$20.8 {}^{+23.9}_{-24.3}$	$23.3^{+23.9}_{-24.4}$	[-24.8, 70.2]
$A_{\pi}(\%)$	—	0.11 ± 0.14	0.14 ± 0.15	[-0.15, 0.42]
$A_K(\%)$	—	-0.13 ± 0.13	$-0.11^{+0.14}_{-0.13}$	[-0.37, 0.15]
$x_{12} \ (\%)$	—	$0.43^{+0.14}_{-0.15}$		[0.13, 0.69]
$y_{12} \ (\%)$	—	0.60 ± 0.07		[0.45, 0.75]
$\phi_{12}(^{\circ})$	—	$0.9 {}^{+1.9}_{-1.7}$		[-3.0, 6.1]

M. Alexander (University of Glasgow)

Mixing and CP violation averages in 2013

Parameter	No CPV	No direct CPV	CPV-allowed	$CPV\mbox{-allowed}$ 95% C.L.
x (%)	$0.49^{+0.17}_{-0.18}$	$0.46\ \pm 0.18$	$0.49{}^{+0.17}_{-0.18}$	[0.10, 0.81]
y~(%)	$0.66\ \pm 0.09$	$0.67\ \pm 0.09$	0.74 ± 0.09	[0.56, 0.92]
δ (°)	$10.8 {}^{+10.3}_{-12.3}$	$11.4^{+10.5}_{-12.7}$	$19.5{}^{+8.6}_{-11.1}$	[-9.6, 35.4]
R_D (%)	0.347 ± 0.006	0.347 ± 0.006	$0.350{}^{+0.007}_{-0.006}$	[0.337, 0.362]
$A_D~(\%)$	—	—	$-2.6\ \pm 2.2$	[-6.9, 1.7]
q/p	—	$1.04 {}^{+0.07}_{-0.06}$	$0.69{}^{+0.17}_{-0.14}$	[0.44, 1.07]
ϕ (°)	-	$-1.6^{+2.4}_{-2.5}$	$-29.6{}^{+8.9}_{-7.5}$	[-44.6, -7.5]
$\delta_{K\pi\pi}$ (°)	$21.3^{+23.4}_{-23.8}$	$22.9^{+23.7}_{-24.0}$	$25.1^{+22.3}_{-23.0}$	[-20.6, 69.2]
A_{π}	—	_	0.16 ± 0.21	[-0.25, 0.57]
A_K	—	_	$-0.16 \ \pm 0.20$	[-0.56, 0.23]
x_{12} (%)	—	$0.46\ \pm 0.18$	_	[0.10, 0.80]
$y_{12}~(\%)$	—	$0.67\ \pm 0.09$	_	$[0.50, \ 0.85]$
$\phi_{12}(^{\circ})$	—	$4.8^{+9.2}_{-7.4}$	_	[-11.7, 35.9]

M. Alexander (University of Glasgow)

Mixing and CPV in charm at LHCb

PANIC14 2014/08/26 40 / 30