CP violation in B decays at LHCb

20th Particles And Nuclei International Conference Hamburg, 25-29 August 2014

Shu-Faye Cheung University of Oxford

on behalf of the LHCb collaboration

Overview

- B decays are an interesting environment to study CP violation: large O(10%) CP violation effects are observed
- Can use CP-violating observables to
 - test the CKM matrix unitarity condition
 - probe New Physics
- Recent LHCb results are presented:
- 1. Tree-level determination of CKM angle γ

 $-B^{\pm} \to D(K_{\rm S}^0 h^+ h^-) K^{\pm}$ arXiv:1408.2748

- 2. Inclusive and local direct CP asymmetries -three-body charmless B^{\pm} decays arXiv:1408.5373
- 3. CP violation in interference between mixing and decay $-B_s^0 \to \phi\phi \qquad \qquad {\rm arXiv:1407.2222}$

LHCb detector

3.0 fb⁻¹ of data collected during Run 1 (2011-2012)

VELO (VErtex LOcater)

Powerful discriminator for B mesons which have flight distance ~ 1 cm at LHCb Impact parameter resolution $\sim 20 \ \mu m$: vital for triggers and offline selection **RICH I & II** (**Ring Imaging CHerenkov detectors**) Particle Identification: π, K, p Essential to differentiate B, D final states Two systems for different momentum ranges

arXiv:1408.2748

Tree-level determination of γ $B^- o D(o K_{ m S}^0 h^+ h^-) K^-$

CKM angle γ

- Unitarity Triangle: visualises one of the off-diagonal ٠ unitarity conditions of the CKM quark-mixing matrix
- Of the three angles, it is the least well known and ٠ the only one that can be measured at tree-level
- Current world average from $\gamma = (70.0^{+7.7}_{-9.9})^{\circ}$ direct measurements: indirect measurements: $\gamma = (66.5^{+1.3}_{-2.5})^{\circ}$
- Can be measured with $B^- \to DK^-$, where D is an admixture of D^0 and \overline{D}^0 decaying to same final state
- Hadronic terms enter and need to be experimentally ٠ determined

r = ratio of amplitude moduli δ = strong phase difference

Many D final states to be exploited

*CPV and mixing in the D system are ignored

CKMfitter Winter '14

'GGSZ': $f(D) = K_{\rm S}^0 \pi^+ \pi^-, K_{\rm S}^0 K^+ K^-$

Multi-body decay

- δ_D (and hence decay rate) varies with finalstate kinematics
- Parameterise in phase space of **Dalitz plot**:

Two methods pursued at LHCb

Model-dependent method Fit the data to an amplitude model to provide δ_D

arXiv:1407.6211

Model-independent method

Use external measurements of δ_D averaged in binned regions of Dalitz plot

Measurements from quantum-correlated $\psi(3770) \rightarrow D\overline{D}$ decays by CLEO experiment

PRD 82, 112006 (2010)

Key advantages

systematics remain robust as statistics grow
 reduces to a counting experiment

However, lose some statistical sensitivity as the phase space is binned.

Model-independent method

Decay rate to bin *i*:

$$N_{\pm i}(B^{-}) \propto \left(F_{\pm i} + (x_{-}^{2} + y_{-}^{2})F_{\mp i} + 2\sqrt{F_{i}F_{-i}}(x_{-}c_{i} \pm y_{-}s_{i})\right)$$
$$N_{\pm i}(B^{+}) \propto \left(F_{\mp i} + (x_{+}^{2} + y_{+}^{2})F_{\pm i} + 2\sqrt{F_{i}F_{-i}}(x_{+}c_{i} \pm y_{+}s_{i})\right)$$

c_i, s_i amplitude-weighted cosine, sine δ_D integrated over bin	$$F_i$$ fractional yield of flavour-tagged $D^0 \to K^0_{\rm S} h^+ h^-$ in bin	$ \begin{aligned} x_{\pm} &= r_B \cos(\delta_B \pm \gamma) \\ y_{\pm} &= r_B \sin(\delta_B \pm \gamma) \end{aligned} $
External input from CLEO-c	Measure with a flavour-tagged control mode which has same efficiency profile as signal	Extract from simultaneous fit to all bins

all we need to know are the relative yields of the signal and control mode in each bin!

 m_{\pm}^{2} [GeV²/ c^{4}]

Model-independent method

Fit to CP observables

 $x_{\pm} = r_B \cos(\delta_B \pm \gamma)$ $y_{\pm} = r_B \sin(\delta_B \pm \gamma)$

Most accurate measurement of these CP observables to date

$$\gamma = \left(62^{+15}_{-14}\right)^{\circ}$$
$$\delta_B = \left(134^{+14}_{-15}\right)^{\circ}$$
$$r_B = \left(8.0^{+1.9}_{-2.1}\right) \times 10^{-2}$$

Precision matches that of B-factory γ combinations

Faye Cheung (Oxford), PANIC 2014

arXiv:1408.5373

Inclusive and local direct CP asymmetries

three-body charmless B^\pm decays

$B^{\pm} ightarrow h^{(')\pm} h^+ h^-$ decays

Interference between tree- and loop-level contributions:

$$\Gamma(B \to f) = \left| \begin{bmatrix} \sum_{\substack{a, c \in \mathcal{F}^{q} \\ a \in \mathcal{F}^{q} \\ \overline{q} \\ \overline{$$

$$A_{CP} \propto \Gamma(B \to f) - \Gamma(B \to f)$$

= $|Ae^{i(s_A + w_A)} + Be^{i(s_B + w_B)}|^2 - |Ae^{i(s_A - w_A)} + Be^{i(s_B - w_B)}|^2$
= $4AB\sin(w_A - w_B)\sin(s_A - s_B)$

Direct CP violation requires at least two amplitudes with weak and strong phase differences

different CKM matrix elements involved in tree and loop	 Short-distance process: Gluon in penguin diagram Long-distance processes a) Amplitudes of intermediate resonances Breit-Wigner propagator: phase varies with resonant mass Final-state interactions: constant phase difference 	CP violation from interference
	b) Rescattering $\pi\pi \leftrightarrow KK$ Occurs between final states with same quantum numbers \Rightarrow Expect large asymmetries in the rescattering region \Rightarrow CPT requires opposite-sign asymmetries for $\pi\pi, KK$	CP violation from rescattering

The processes inducing strong phase differences can be studied with local asymmetries

Asymmetries incompatible with $A_{CP} = 0$

Local asymmetries

Background-subtracted and acceptance-corrected asymmetries Adaptive binning: ~ equal statistics in each bin

Large differences in asymmetries across the Dalitz plot => study projections

CPV from interference

 $B^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$

 $\cos\theta:\pi^\pm$ helicity angle with same-sign daughter

- In all channels the charge asymmetry changes sign near a resonance (here $\rho(770){\rm)}$
- Long-distance interference term for vector resonance $\propto \cos \theta$ Short-distance term $\propto \cos^2 \theta$
- Asymmetry is opposite sign in the two $\cos \theta$ ranges: long-distance interference is dominant

Similar behaviour in $B^{\pm} \to K^{\pm} \pi^+ \pi^-$

CPV from rescattering

Oppositely-signed asymmetries for $\pi^+\pi^-$ and K^+K^- pairs, as required by CPT symmetry Rescattering plays an important role in CP violation in these channels!

arXiv:1407.2222

CP violation in loop-level decays

 $B^0_s o \phi \phi$

- FCNC decay, proceeds via loop diagrams
- CP violation enters:
 - primarily through phase difference between decays with and without mixing: ϕ_s
 - assume no CPV in mixing
 - small amount of direct CPV to be measured $|\lambda| \equiv (\overline{A}/A) \sim 1$
- Angular analysis needed to separate CP-eigenstates, which have different lifetime distributions
 - $\phi \phi$ final state: linear combination of CP-even and CP-odd eigenstates
 - each K^+K^- pair: P-wave ϕ , S-wave resonant $f_0(980)$, non-resonant, interference terms

Angular momentum conservation $0^{-1} \rightarrow 1^{-1} 1^{-1}$

Final state: CP even (L = 0, 2) and CP odd (L = 1)

3 polarisation amplitudes

⇒ different angular distributions studied in helicity angle basis

Two complementary probes of CPV

Interference between oscillation and direct decay amplitudes

 $\begin{array}{l} \text{SM expectation: small} \\ |\phi_s| < 0.02 \text{ rad} \end{array}$

Potentially large enhancement from NP

Improve sensitivity by tagging initial B_s^0 flavour

ϕ_s measurement

Obtain per-event signal weights by fitting the invariant mass spectrum

3950 signal events

Flavour-tagging

'Opposite Side' algorithm

Reconstruct other *b* quark that was produced with signal

'Same Side Kaon' algorithm

Associated \bar{s} quark formed in hadronisation of signal B^0_s meson which forms a charged kaon

Combined tagging efficiency of ~26%, with ~33% mistag rate

Decay time acceptance

 $B_s \rightarrow D_s \pi$ data and simulation passing same selection requirements and kinematically weighted to signal

ϕ_s measurement

T-odd triple product asymmetries

Summary and outlook

- Latest measurements of $\gamma \ (B^\pm \to DK^\pm)$, local asymmetries in $B \to 3h$, and $\phi_s \ (B^0_s \to \phi \phi)$ presented
- Many other LHCb measurements of these parameters!

$$\begin{split} \gamma:B &\to (D \to hh)K^* & \text{arXiv:} 1407.8136 \\ B_s \to D_s K & \text{arXiv:} 1407.6127 \\ \phi_s:B_s \to J/\psi\pi\pi & \text{PLB 736 (2014) 186} \\ \text{local } A_{CP}:B \to p\bar{p}K & \text{arXiv:} 1407.5907 \end{split}$$

- Measurements of CP violation in the B-sector have been found to be compatible with the Standard Model
- Many results still statistically-limited: Run 2 will deliver a further 5 fb⁻¹ of data to provide further constraints on the CKM matrix and on New Physics

EXTRA SLIDES

Local asymmetries

• Exploit angular analysis & local asymmetries in Dalitz phase space to better understand different sources of strong phase difference

