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Overview 

1.  Tree-level determination of CKM angle  
–                               

2.  Inclusive and local direct CP asymmetries 
– three-body charmless       decays 

3.  CP violation in interference between mixing and decay 
–                      
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•  B decays are an interesting environment to study CP violation:  
large O(10%) CP violation effects are observed 

•  Can use CP-violating observables to 
•  test the CKM matrix unitarity condition 
•  probe New Physics 

•  Recent LHCb results are presented: 



LHCb detector 
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VELO  
(VErtex LOcater) 
Powerful discriminator for B mesons which 
have flight distance ~1 cm at LHCb 
Impact parameter resolution ~ 20 µm: vital 
for triggers and offline selection  

RICH I & II  
(Ring Imaging CHerenkov detectors) 
Particle Identification: π, K, p 
Essential to differentiate B, D final states 
Two systems for different momentum ranges 

3.0 fb-1 of data collected during Run 1 (2011-2012)  

2 < ⌘ < 5



Tree-level determination of 
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•  Unitarity Triangle: visualises one of the off-diagonal 
unitarity conditions of the CKM quark-mixing matrix 

•  Of the three angles, it is the least well known and 
the only one that can be measured at tree-level 

•  Current world average from  
 direct measurements: 
 indirect measurements: 

•  Can be measured with B to DK        , where D  is an 
admixture of Db and Db decaying to same final state 

•  Hadronic terms enter and need to be experimentally 
determined 

•  Many     final states to be exploited 

�

B� ! B+, � ! ��
*CPV and mixing in the     system are ignored D
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‘GGSZ’: 
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Multi-body decay 
•        (and hence decay rate) varies with final-

state kinematics 
•  Parameterise in phase space of Dalitz plot: 

Model-independent method 
Use external measurements of       averaged in 
binned regions of Dalitz plot 
 
Measurements from quantum-correlated  

    decays by CLEO experiment 
 
 
Key advantages 
1. systematics remain robust as statistics grow 
2. reduces to a counting experiment 
 
However, lose some statistical sensitivity as the 
phase space is binned. 

Two methods pursued at LHCb 
 
Model-dependent method 
Fit the data to an amplitude model to provide 
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Model-independent method  
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External input  
from CLEO-c 

Extract from 
simultaneous fit to all 

bins 

 
fractional yield of flavour-tagged 

                          in bin 

 
amplitude-weighted cosine, 
sine       integrated over bin 

ci, si  
 
 

x± = rB cos(�B ± �)

y± = rB sin(�B ± �)
�D

Measure with a flavour-tagged 
control mode which has same 

efficiency profile as signal     

all we need to know are the relative yields of the signal and control mode in each bin! 

B� f(D)K�
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Model-independent method 
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low level of                 cross-feed 
and other backgrounds 

B ! D⇡

B ! D⇤+µ�⌫̄µ, D
⇤+ ! D0⇡+Also from LHCb data: 
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High yield  
(~ 40×signal yield)  
 
High purity 
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Statistical uncertainties 
2D confidence intervals 

@ 39.3, 86.5, 98.9% 

Fit to CP observables 

CP violation in B decays Faye Cheung (Oxford), PANIC 2014 9 

 
 
 

x± = rB cos(�B ± �)

y± = rB sin(�B ± �)

x+ = (�7.7± 2.4± 1.0± 0.4)⇥ 10�2

y+ = (�2.2± 2.5± 0.4± 1.0)⇥ 10�2

x� = (2.5± 2.5± 1.0± 0.5)⇥ 10�2

y� = (7.5± 2.9± 0.5± 1.4)⇥ 10�2

Statistical Experimental 
strong phase  

measurements 

Most accurate measurement of these CP 
observables to date 
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Inclusive and local  
direct CP asymmetries 

 
three-body charmless        decays 
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B±
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                                   decays 

Direct CP violation requires at least two amplitudes with  weak  and  strong  phase differences 
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different CKM matrix 
elements involved in 
tree and loop 

•  Short-distance process: Gluon in penguin diagram 
•  Long-distance processes 
a) Amplitudes of intermediate resonances 
Breit-Wigner propagator: phase varies with resonant mass  
Final-state interactions: constant phase difference 
 
b) Rescattering  
Occurs between final states with same quantum numbers 
⇒  Expect large asymmetries in the rescattering region 
⇒  CPT requires opposite-sign asymmetries for      , ⇡⇡ KK

⇡⇡ $ KK

Interference between tree- and loop-level contributions: 
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The processes inducing strong phase differences can be studied with local asymmetries 

= |Aei(sA+wA) +Bei(sB+wB)|2 � |Aei(sA�wA) +Bei(sB�wB)|2
ACP / �(B ! f)� �(B ! f̄)

= 4AB sin(wA � wB) sin(sA � sB)

= |Aei(sA+wA) +Bei(sB+wB)|2�(B ! f) = +

2



Inclusive asymmetries 
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stat. syst. 
syst. due to 

2.8�
4.3�

5.6�

4.2�

ACP (B
± ! J/ K±) = (0.1± 0.7)%

 
 
 
Raw asymmetries 
corrected for: 
•  detection asymmetry 
•  production asymmetry 
•  kaon matter-interaction 

asymmetry 

Araw =
NB� �NB+

NB� +NB+

Asymmetries incompatible with  ACP = 0

B� B+ B� B+



Local asymmetries 

Large differences in asymmetries across the Dalitz plot => study projections 
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Background-subtracted and acceptance-corrected asymmetries 
Adaptive binning: ~ equal statistics in each bin 

⇡±K+K�

K±K+K�
⇡±⇡+⇡�

K±⇡+⇡�

negative asymmetries positive asymmetries 

Araw =
NB� �NB+

NB� +NB+



CPV from interference 
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B± ! K±⇡+⇡�Similar behaviour in  

cos ✓ < 0

cos ✓ > 0

B± ! ⇡±⇡+⇡�

•  In all channels the charge 
asymmetry changes sign near 
a resonance (here            ) 

•  Long-distance interference 
term for vector resonance   
 
Short-distance term 

•  Asymmetry is opposite sign in 
the two          ranges: long-
distance interference is 
dominant 

⇢(770)

/ cos ✓
/ cos

2 ✓

Larger yield 
Smaller CP asymmetry 

Smaller yield 
Larger CP asymmetry 

Possible explanation: relative tree and penguin 
contributions vary across phase space 

cos ✓

helicity angle with same-sign daughter 
cos ✓ : ⇡±



CPV from rescattering 
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m(⇡+⇡�),m(K+K�) 2 [1.0, 1.5]GeV/c2

B� B+ B� B+

10-30% CP asymmetries with >5σ significance observed 
Oppositely-signed asymmetries for           and              pairs, as required by CPT symmetry 

Rescattering plays an important role in CP violation in these channels! 
⇡+⇡� K+K�

Rescattering region 



CP violation in  
loop-level decays 
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                    B0
s ! ��

•  FCNC decay, proceeds via loop diagrams 

•  CP violation enters: 
–  primarily through phase difference between 

decays with and without mixing: 
–  assume no CPV in mixing 
–  small amount of direct CPV to be measured 

•  Angular analysis needed to separate CP-eigenstates, 
which have different lifetime distributions 
–         final state: linear combination of CP-even 

and CP-odd eigenstates 
–  each              pair: P-wave p, S-wave resonant 

  , non-resonant, interference terms f0(980)

Angular momentum conservation 
0-1 ! 1-1 1-1  

 
Final state: CP even (L = 0, 2) and 

CP odd (L = 1) 
 

3 polarisation amplitudes  
⇒  different angular distributions 

studied in helicity angle basis 
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Figure 2: Decay angles for the B0
s

! �� decay, where the K+ momentum in the �1,2 rest frame
and the parent �1,2 momentum in the rest frame of the B0

s

meson span the two � meson decay
planes, ✓1,2 is the angle between the K+ track momentum in the �1,2 meson rest frame and the
parent �1,2 momentum in the B0

s

rest frame, � is the angle between the two � meson decay
planes and n̂

V1,2 is the unit vector normal to the decay plane of the �1,2 meson.

fitting by making use of the di↵erent functions of the helicity angles associated with these139

terms. The choice of which � meson is used to determine ✓1 and which is used to determine140

✓2 is randomised. The total amplitude (A) containing the P -, S-, and double S-wave141

components as a function of decay time, t, can be written as [36]142

A(t, ✓1, ✓2,�) = A0(t) cos ✓1 cos ✓2 +
Ak(t)p
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+ i
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3
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where A0, Ak, and A? are the CP -even longitudinal, CP -even parallel, and CP -odd143

perpendicular polarisations of the B0
s

! �� decay. The P ! VS and P ! SS processes144

are described by the A
S

and A
SS

amplitudes, respectively. The di↵erential decay rate may145

be found through the square of the total amplitude leading to the 15 terms [36]146
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where the coe�cients are shown in Table 1, ��
s

⌘ �L � �H is the decay width di↵erence148

between the light and heavy B0
s

mass eigenstates, �
s

⌘ (�L + �H)/2 is the average decay149
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Two complementary probes of CPV 
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Interference between oscillation and direct 
decay amplitudes 

 
SM expectation: small  

 
 

Potentially large enhancement from NP 
 

Improve sensitivity by tagging initial       flavour 

T-odd triple-product asymmetries 
 
 
 
 
 
 
 
T-odd triple-products 
 
 
 
Triple-product asymmetries 
 
 
 

SM expectation: close to zero 
 

Counting experiment, independent of decay 
time or initial       flavour 
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Background subtraction 
 
Obtain per-event signal 
weights by fitting the 
invariant mass 
spectrum 
 
3950 signal events 
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Flavour-tagging 
 

‘Opposite Side’ algorithm 
Reconstruct other b quark that was produced with 
signal 
‘Same Side Kaon’ algorithm 
Associated    quark formed in hadronisation of 
signal       meson which forms a charged kaon 
 
Combined tagging efficiency of ~26%, with ~33% 
mistag rate 

Decay time acceptance 
 
                    data and 
simulation passing 
same selection 
requirements and 
kinematically weighted 
to signal 
  

Angular acceptance (simulation) 
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Comparison to     in 
 
 

No large CP violation in Bs mixing 
No large CP violation in decay amplitude  
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     measurement �s
CP-even P-wave CP-odd P-wave S-wave + double S-wave 

�s = �0.17± 0.15 (stat.)± 0.03 (syst.)

Time evolution of the polarisation states: 
Polarisation amplitudes, strong phases 
      mixing parameters (constrained to LHCb measurements) 
CPV parameters 
Flavour tagging parameters 

�s, |�|
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|�| = 1.04± 0.07 (stat.)± 0.03 (syst.)

d

4
�

dt d cos ✓1 d cos ✓2 d�
/

X

i

Ki(t)fi(✓1, ✓2,�)

In agreement with SM theory predictions 
No direct CP violation observed 
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PRD 87, 112010 (2013) 
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T-odd triple product asymmetries 

Results are consistent with CP conservation hypothesis 
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AU = �0.003± 0.017 (stat.)± 0.006 (syst.)

AV = �0.017± 0.017 (stat.)± 0.006 (syst.)

Counting experiment, data points are background-subtracted 
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meson span the two � meson decay
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parent �1,2 momentum in the B0
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rest frame, � is the angle between the two � meson decay
planes and n̂

V1,2 is the unit vector normal to the decay plane of the �1,2 meson.

fitting by making use of the di↵erent functions of the helicity angles associated with these139

terms. The choice of which � meson is used to determine ✓1 and which is used to determine140

✓2 is randomised. The total amplitude (A) containing the P -, S-, and double S-wave141

components as a function of decay time, t, can be written as [36]142

A(t, ✓1, ✓2,�) = A0(t) cos ✓1 cos ✓2 +
Ak(t)p

2
sin ✓1 sin ✓2 cos�

+ i
A?(t)p

2
sin ✓1 sin ✓2 sin�+

A
S

(t)p
3

(cos ✓1 + cos ✓2) +
A

SS

(t)

3
, (1)

where A0, Ak, and A? are the CP -even longitudinal, CP -even parallel, and CP -odd143

perpendicular polarisations of the B0
s

! �� decay. The P ! VS and P ! SS processes144

are described by the A
S

and A
SS

amplitudes, respectively. The di↵erential decay rate may145

be found through the square of the total amplitude leading to the 15 terms [36]146

d�

dt d cos ✓1 d cos ✓2 d�
/ 4|A(t, ✓1, ✓2,�)|2 =

15X

i=1

K
i

(t)f
i

(✓1, ✓2,�). (2)

The K
i

(t) term can be written as147

K
i

(t) = N
i

e��st


c
i

cos(�m
s

t) + d
i

sin(�m
s

t) + a
i

cosh

✓
1

2
��

s

t

◆
+ b

i

sinh

✓
1

2
��

s

t

◆�
,

(3)

where the coe�cients are shown in Table 1, ��
s

⌘ �L � �H is the decay width di↵erence148

between the light and heavy B0
s

mass eigenstates, �
s

⌘ (�L + �H)/2 is the average decay149

5

U ⌘ sin� cos� V ⌘ sin(±�)

 
Non-zero asymmetries 

indicate either CPV or final 
state interactions 



Summary and outlook 
•  Latest measurements of          , local asymmetries in         , 

and                          presented   

•  Many other LHCb measurements of these parameters! 

•  Measurements of CP violation in the B-sector have been found to be 
compatible with the Standard Model 

•  Many results still statistically-limited: Run 2 will deliver a further 5 fb-1 of 
data to provide further constraints on the CKM matrix and on New Physics  
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� (B± ! DK±)
�s (B

0
s ! ��)

B ! 3h

arXiv:1407.8136 
arXiv:1407.6127 
PLB 736 (2014) 186 
arXiv:1407.5907 

� : B ! (D ! hh)K⇤

Bs ! DsK

�s : Bs ! J/ ⇡⇡

local ACP : B ! pp̄K
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Local asymmetries 
•  Exploit angular analysis & local asymmetries in Dalitz phase space to better understand 

different sources of strong phase difference  
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K±⇡+⇡�
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K±K+K�
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could remove 
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