Recent Results from the ANTARES Neutrino Telescope

Robert Lahmann PANIC 14, Hamburg, 28-Aug-2014

Introduction

Neutrino Astronomy:

The "big picture" discussed in Kara Hoffman's talk on Wednesday

Highlighted topics in this talk:

- Diffuse fluxes
- Point sources
- Multi-messenger searches
- Dark Matter
- Acoustic neutrino detection
- Not discussed: GRBs, atmospheric neutrinos, nuclearites, magnetic monopoles, neutrino oscillations, associated sciences,...

Main motivation to build a neutrino telescope

Neutrinos from Cosmic Accelerators

The ANTARES Detector

A Storey: The Basic Detector Element

muon neutrino, CC only (track reconstruction) all neutrino flavours, CC & NC (shower reconstruction)

Atmospheric Neutrino Background

Diffuse Flux: Two Analyses

- Track reconstruction
 - sensitive to CC reactions of muon-neutrinos only
 - large effective volume due to length of muon track (several km for E > few GeV)
 - good angular resolution (typically better than 1°)
- Shower reconstruction
 - sensitive to all neutrino flavours, CC & NC
 - smaller effective volume
 - worse angular resolution (typically a few degrees)

Diffuse Flux: Analysis Strategy

- "Generic" event selection strategy:
 - track/shower reconstruction using fit on PMT hit coincidences (define quality parameter, apply cuts)
 ⇒event sample selection for analysis
 - determine direction of incoming neutrino
 ⇒atmospheric muon rejection
 - energy estimator
 ⇒atmospheric neutrino rejection
 - specific cuts, e.g. minimum number of hits, lines, etc
- Blinding strategy

Use MC simulations and 10% of data as "burn sample" to optimize cuts

Diffuse Flux: Showers

Two of the 8 observed events

Diffuse Flux: Results

Analysis type	Showers	Track
Neutrino flavours	All flavours	Muonic
Period	2007-2012 (1247 days)	2007-2011 (885 days)
Exp. background events	4.9	8.4
Observed events	8	8
Upper limit $E^2 \cdot \Phi_{90\%} \left[\text{GeV/(cm}^2 \text{ sr s}) \right]$ (per flavour, 90% CL, systematic included)	4.9×10 ⁻⁸	5.1×10 ⁻⁸
Energy range	23 TeV < E < 7.8 PeV	45 TeV < E < 10 PeV
PANIC 14 - 28-Aug-2014 - Robert Lahmann	PRELIMINAL	11

Diffuse Flux: Results

Point Sources

- Years 2007-2012 (1338 days):
 - 5516 neutrino candidates (angular reconstruction for 90 % better than 1⁰)
 - signal/background (atm. neutrinos) separation with likelihood method

$$\log L_{s+b} = \sum_{i} \log \left[\frac{n_s}{N} S_i + \left(1 - \frac{n_s}{N} \right) B_i \right]$$

- Statistical Significance of a cluster of events: Determine p-value from a number of "pseudo-experiments" with only background
 - pre-trial p-value: fraction of pseudo-experiments reproducing a cluster equivalent to observed one
 - post-trial p-value: fraction of pseudo-experiments with at least one equivalent or larger cluster reproduced "anywhere"

Point Sources

- All-Sky-Search:
 - most significant cluster, 6 (14) events in $1^{\circ}(3^{\circ})$: p-value = 2.7% (2.2 σ)
 - compatible with background hypothesis

- Fixed search: List of 50 neutrino candidate sources:
 - max. p-value 6.1% (1.9 σ)

Flux Sensitivities and Limits

- ANTARES 2007-2012 (1338 days)
- IceCube 2008-2011 (1040 days)
- 90% C.L.

Indirect Searches for Dark Matter

Search for neutrinos from dark matter (WIMP) annihilations

• ... in the Sun:

χ

WIMPs gravitationally trapped via elastic collisions in the sun Sun XX WW, ff

Earth

ANTARES

• ... in the galactic center:

WIMPs self-annihilate according to $\langle \sigma_A v \rangle$ (halo model-dependent)

annihilation cross section

relative velocity

 $W, f \rightarrow \mathbf{V} \mathbf{X}$

Sun – Limits on spin-dependent (SD) cross-sections

Multi Messenger Program

uncorrelated backgrounds and systematics.

The AMADEUS System of ANTARES

Goal: feasibility study of acoustic detection techniques

Spatial Distribution of Acoustic Transient Background

Conclusions

- ANTARES is in its seventh year of operation
- Moderate size, but thanks to its location and excellent angular resolution, it is yielding unique results for diffuse flux, point source searches, dark matter and other subjects
- ANTARES will keep producing results until the next generation Mediterranean neutrino telescope, KM3NeT, takes over

Bundesministerium für Bildung und Forschung

Thank you for your attention

Bundesministerium für Bildung und Forschung

Backups

Diffuse Flux from Special Regions: Fermi Bubbles

Excess of γ - (and X-) rays in extended "bubbles" above and below the Galactic Centre. Homogenous intensity, hard spectrum (E⁻²) probably with cutoff.

M. Su et al., ApJ. 724 (2010),
G. Dobler et al., ApJ. 717, 825 (2010),
M. Su & D.P. Finkbeiner ApJ 753, 61 (2012),
R. Yang et al., astro-ph 1402.040

Source around the GC?

What about IC's cluster near the GC?

- Shower events have low angular resolution
- IC does <u>not</u> claim a signal. If it were a point source:

 $(\alpha, \delta) = (-79^{\circ}, -23^{\circ});$ $\phi_{\circ} = 6 \times 10^{-8} \text{ GeV cm}^{-2} \text{ s}^{-1}$

(M. C. Gonzalez-Garcia, F. Halzen and V. Niro, arXiv1310.7194)

ANTARES:

- Point source search at different δ's
- Allow for extended sources: widths: 0°, 0.5°, 1° and 3°

ANTARES data excludes a point source as origin of the IceCube's cluster