The Role of Resonances in p+p Reactions associated with Strangeness Production

08/25/2014 – Jia-Chii Berger-Chen

TU München, Excellence Cluster Universe PANIC 2014 Hamburg

The Role of $\Delta(2035)^{++}$ in p+p $\rightarrow \Sigma(1385)^{+}+n+K^{+}$

Agakishiev et al. Phys. Rev. C 85, 035203 (2012)

Kaons in Medium

- K⁺ / K⁻ mass in-/decreases in nuclear medium
- High density (8-10 ρ_0) in neutron stars! if $E_{K^-} < \mu_e$: n \rightarrow p + K⁻
 - $e^{-} \rightarrow K^{-} + \nu_{e}$

 \rightarrow Constraint for possible EOS Strangeness content softens EOS

14

15

MS0

MS2

Kaon Nucleon Potential

Agakishiev et al. Phys. Rev. C 82, 044907 (2010) | Büscher et al. Eur. Phys. J. A 22, 301-317 (2004) Benabderrahmane et al. Phys. Rev. Lett. 102, 182501 (2009)

	Ar+KCl - HADES	π⁻+A - FOPI	p+A - ANKE
KN potential [MeV]	39^{+8}_{-2}	20 ± 5	20 ± 3

Kaon Nucleon Potential

Agakishiev et al. Phys. Rev. C 82, 044907 (2010) | Büscher et al. Eur. Phys. J. A 22, 301-317 (2004) Benabderrahmane et al. Phys. Rev. Lett. 102, 182501 (2009)

	Ar+KCl - HADES	π⁻+A - FOPI	p+A - ANKE
KN potential [MeV]	39^{+8}_{-2}	20 ± 5	20 ± 3

First understand elementary reactions!

Constraints for Transport Models

Transport models often used for physics interpretation Need of calibration on elementary reactions (e.g. p+p) \rightarrow cross sections, angular distributions, **resonance contributions**

E.g. p+p @ 3.5 GeV – Inclusive K_S^0 production

 \rightarrow Neither cross sections nor angular distributions are described!

HSD: Cassing et al., Phys. Rep. 308, 65 (1999) |UrQMD: Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998) GiBUU: Buss et al., Phys. Rept. 512, 1-124 (2012)

p+p Reactions associated with K⁰ - Examples -

Measured Exclusive Cross Sections

Measured Exclusive Cross Sections

Measured Exclusive Cross Sections

The HADES Experiment @ GSI, Darmstadt

High Acceptance Di-Electron Spectrometer:

- High acceptance for dilepton pairs
- Momentum resolution ≈ 3 %
- Particle identification via dE/dx
- 1.2·10⁹ events in p+p @ 3.5 GeV

Data Sample

Events with the 4 charged particles **p**, π^+ , π^- , π^-

Considered contributing channels:

$$\begin{array}{c} \mathbf{p} + \mathbf{p} \rightarrow \Lambda / \Sigma^{0} + \Delta^{++} + \mathbf{K}^{0} & \mathbf{p} + \pi^{+} + \pi^{-} & 69.2\% \\ \epsilon = 331/254 \text{ MeV} & & \mathbf{p} + \pi^{+} & 100\% \end{array} \qquad \begin{array}{c} \mathbf{p} + \mathbf{p} \rightarrow \Sigma (\mathbf{1385})^{+} + \mathbf{p} + \mathbf{K}^{0} & \mathbf{h} + \pi^{-} \\ \epsilon = 385 \text{ MeV} & & \mathbf{h} + \pi^{+} & 87.0\% \end{array}$$

$$\begin{array}{c} \mathbf{p} + \mathbf{p} \rightarrow \Lambda / \Sigma^{0} + \mathbf{p} + \pi^{+} + \mathbf{K}^{0} & \epsilon = 551 \text{ MeV} \\ & & \mathbf{h} + \pi^{-} & \mathbf{h} + \pi^{-} \\ \epsilon = 485/408 \text{ MeV} & & \mathbf{h} + \pi^{+} & 48.3\% \end{array}$$

& other K⁰ production channels each with rather small contribution

 \rightarrow All reactions simulated with a Monte Carlo event generator

Invariant Mass (π^+ , π^-)

Data sample:

events with 4 particles (p, π^+ , π^-) with cuts on the K_S^0 decay topology.

Low mass and high mass sideband used to emulate the kinematics of the background.

Simultaneous Fit to 5 Observables with total sideband

• sideband constraint to \pm 30% \rightarrow X²/NDF = 2.57

The 5 fitted Observables - in ACCEPTANCE -

MM(p,π⁺,π⁻) and MM(p,π⁺,π⁺,π⁻) - in ACCEPTANCE -

$MM(p,\pi^+,\pi^+,\pi^-) \text{ with cut on } MM(p,\pi^+,\pi^-)$ - in ACCEPTANCE -

 $MM(p,\pi^+,\pi^-) > 1270 \text{ MeV/c}^2$

M(p, π⁺) - in ACCEPTANCE -

Angular Distributions Scaling from simult. fit used for simulation

Including Angular Anisotropy

$$\begin{split} p+p &\rightarrow \Sigma^{+} + p + K^{0} : \text{from COSY-TOF at } E_{kin} = 2.26 \text{ GeV} \\ p+p &\rightarrow \Sigma(1385)^{+} + p + K^{0} : \text{from } \Sigma(1385)^{+} + n + K^{+} \\ p+p &\rightarrow \Lambda + \Delta^{++} + K^{0} : \text{from } X^{2}/\text{ndf minimization of } \cos\theta_{cm}^{p\pi^{+}} \\ p+p &\rightarrow \Sigma^{0} + \Delta^{++} + K^{0} : \text{from } X^{2}/\text{ndf minimization of } \cos\theta_{cm}^{p\pi^{+}} \end{split}$$

Abdel-Bary et al., arXiv:1202.4108v1 [nucl-ex] | Agakishiev et al., Phys. Rev. C 85, 035203 (2012)

Angular Distribution of Δ^{++} Candidates - in ACCEPTANCE -

 X^2 /ndf (anisotropic sim.) = 1.87 X^2 /ndf (isotropic sim.) = 25.64

Corrected Angular Distribution

Cross Sections of Exclusive Channels

statistical uncertainty: relative stat. uncertainty of experimental data systematic uncertainty:

- variation of secondary vertex cuts each by ±20%
- variation of the sideband integral in $M(\pi^+, \pi^-)$ by $\pm 20\%$

Cross Sections

Reaction: $p + p \rightarrow$	σ _{isotropic} [μb]	σ _{anisotropic} [μb]
$\Lambda + p + \pi^+ + K^0$	$2.37 \pm 0.02^{+0.18}_{-2.35} \pm 0.17$	2 . 57 \pm 0.02 ^{+0.21} _{-1.98} \pm 0.18
$\Lambda + \Delta^{++} + K^0$	$25.56 \pm 0.08^{+1.85}_{-1.45} \pm 1.79$	$29.27 \pm 0.08^{+1.67}_{-1.46} \pm 2.06$
$\Sigma^0 + p + \pi^+ + K^0$	$1.40 \pm 0.02^{+0.41}_{-1.40} \pm 0.10$	$1.35 \pm 0.02^{+0.10}_{-1.35} \pm 0.09$
$\Sigma^0 + \Delta^{++} + K^0$	9 . 17 \pm 0.05 ^{+1.45} _{-0.11} \pm 0.64	$9.26 \pm 0.05^{+1.41}_{-0.31} \pm 0.65$
$\Sigma^+ + p + K^0$	24 . 25 \pm 0.63 ^{+2.42} _{-1.80} \pm 1.70	$26.27 \pm 0.64^{+2.57}_{-2.13} \pm 1.84$
$\Sigma(1385)^+ + p + K^0$	$13.15 \pm 0.05^{+1.91}_{-2.07} \pm 0.92$	$14.35 \pm 0.05^{+1.79}_{-2.14} \pm 1.00$
	\smile	\smile

systematic uncertainties from normalization to elastics

Cross Sections compared to World Data

Summary

Agakishiev et al., Phys. Rev. C 90, 015202 (2014)

SUMMARY:

- Extraction of cross sections for K⁰ channels with help of incoherent simulations
- Clear sign for angular anisotropy in the production

 $\rightarrow \Lambda + \Delta^{++} + \mathrm{K}^0$ has strong anisotropy

- $\rightarrow \Sigma^0 + \Delta^{++} + K^0$ has less anisotropy
- \rightarrow Difference in angular distributions observed also in COSY-TOF study

of
$$p + p \rightarrow \Lambda/\Sigma^0 + p + K^+$$
 @ p_{beam} = 3059 MeV/c

Abdel-Bary et al., Eur. Phys. J. A 46, 27-44 (2010)

Thank you!

HADES Collaboration

Back Up

K*(892)⁺ Contribution?

 $\begin{array}{c} p+p \rightarrow \Lambda/\Sigma^0 + p + K^*(892)^+ \\ & \mathchoice \longleftarrow \\ & \begin{matrix} K^0 + \pi^+ \end{matrix} \end{array}$

ε = 230/257 MeV

 \rightarrow Not enough acceptance

Invariant Mass (π^+ , π^-) & MM(p, π^+ , π^-)

Fit Sideband Sample to Momentum of K_S^0 Background

dPdO Comparison Sideband Sample vs. K⁰_SBackground

M(p, π⁺) total strength to non-resonant - in ACCEPTANCE -

Variation of the A₂ Coefficient

Legendre polynomial:

$$y = A_0 + A_1 x + A_2 \frac{1}{2} (3x^2 - 1) + A_3 \frac{1}{2} (5x^3 - 3x) + A_4 \frac{1}{8} (35x^4 - 30x^2 + 3)$$

responsible for the strength of the anisotropy

X²/ndf for isotropic sim: 25.64

Angular Distribution of Δ^{++} Candidate - in ACCEPTANCE -

All channels simulated with ISOTROPIC angular distribution

with primary vertex cut, K_S^0 secondary vertex cuts & $3\sigma K_S^0$ mass cut

Correction of $\Lambda + (p + \pi^+)/\Delta^{++} + K^0$

- Subtraction of all contributions except $\Lambda + p + \pi^+ + K^0$ and $\Lambda + \Delta^{++} + K^0$ in experimental spectrum with Λ -selection \rightarrow assuming correct yield and angular distrubutions of subtracted channels
- Calculating the correction matrix from simulation of these channels with the extracted angular distributions and cross sections

