

20th Particles & Nuclei International Conference

25-29 August 2014 Hamburg, Germany

Search for Muonic Atoms at RHIC

Kefeng Xin (for the STAR Collaboration)

Rice University

PANIC2014, Hamburg

24-29 August 2014

Outline

Motivation

- Particle identification
- ♦ Invariant mass
 - Background determination
 - Coulomb rejection
 - Signal extraction
- Correlation functions
 Coulomb revealing
 Double ratio

$\Rightarrow \pi$ - μ correlations

Motivation

Potential discovery of new atoms

p+- μ ⁻	Κ+- μ ⁻	π^+ - μ^-
anti-p- μ^+	Κ μ +	<i>π</i> μ+

Theory Estimations

Muonic Atom Detection at STAR

1) Dissociation of the atoms before the detector

Kefeng Xin

Foreground and Backgrounds

- Foreground method:
 - UnLike-sign (UL) foreground: tracks with the different charges are paired
- Background method:
 - Mixed-Event (ME): tracks from different events are paired
 - Like-Sign (LS): tracks with the same charge are paired

Invariant Mass

- Observed sharp peaks for atoms at expected mass M_{inv}-M_µ-M_h= 0
 GeV/c² from both background subtraction methods
- Good background methods -- Flat at higher mass (0.05~0.2 GeV/ c²)
- Like-Sign (LS) background has repulsive Coulomb contribution, and thus underestimates the background, leading to a higher "signal" than Mixed-Event (ME)

Invariant Mass

In pair invariant mass method:

UnLike-sign pairs have different charges -- attractive Coulomb

Like-Sign pairs have same charges -- repulsive Coulomb

Mixed-Event pairs - no Coulomb

We adopt the observable $(UL \times LS) / ME^2 - 1$ to reject Coulomb

Correlation Functions

K-π Correlations

Take K- π system as a reference in which Coulomb dominates:

- Enhancement in Unlike-Sign
- Suppression in Like-Sign

Kefeng Xin

K-µ Correlations

π - μ Correlations

If there are only final state coulomb interactions,

- Like-Sign CF should be <1, and increase monotonically approaching 1
- Unlike-Sign CF should be >1, and decrease monotonically approaching 1

π-π Correlations

- ♦ In like-sign pairs, the correlations come from rejecting Coulomb force.
- ♦ In like-sign pairs, the correlations come from: [STAR PRC 83 064905 2011]
 - Bose-Einstein quantum statistics
 - ♦ Coulomb final state interaction Ψ

π - μ^A Correlations

1) Use two pions from real data

- 2) Let one π decay to μ +v, based on energy momentum conservation only
 - 1) Let decay in π center-of-mass frame
 - 2) boost decay products using β_{π}
- 3) Calculate the correlation between the "artificial" muon (μ^A) and the other π

Three Correlation Functions

A: π - μ^{A} – weak-decay only

A can be determined by the simulated decay method

B can be measured directly from data

C' ~ $C(\pi-\pi) \sim 1/C(\pi-\pi)_{UL}$ to avoid quantum statistics contribution

Kefeng Xin

Fitting Results

Very low k* is discarded because – when we simulate the decay π ->µ^A+v, there are always missing pions, which can not be saved anyways due to track merging.

Summary

- Invariant mass peaks at the expected atom masses have been observed
 - ★ The signal is robust after Coulomb effect is rejected
 - ★ The singal is consistent in all (anti-matter) pairs
- Femtoscopic correlation studies are consistent with ionization of muonic atoms
 - ★ Correlation shows the existence of Coulomb force
 - The double ratio indicates the daughter particles are emitted at the same space-time point – disassociated from muonic atoms
- π-μ correlations are used to extract fraction of direct muons

BACKUP

Kefeng Xin

What is a muonic atom

Hadron+muon Coulomb bound state

Facts

- Binding energy 0 keV
- Bohr radius
- $a_0*(m_e/m_red)$
- =279fm (p+mu)
- =440fm (pi+mu)
- Bohr velocity alpha*c/n

```
What to expect
```

- Atom mass = m_p+m_m
- Atoms can only be at **s** state

□ Pp/mp=pmu/mmu

Kefeng Xin

Femtoscopic Correlation

Study small physics scale by using measured momentum from our detectors

Kefeng Xin

Correlation Functions for K-µ

- The Coulomb contributions are weaker washed out by long life time decays
- Differences between Like-Sign and Unlike-Sign at low k*

Kefeng Xin

π-µ Invariant Mass

Like-sign background method is larger than foreground

- Leads to negative region in S/B (red in circle)
- This is not consistent with K-μ, p-μ

Identical particle quantum statistics – attractive

Kefeng Xin

Compare K- μ with K- π

- In both K-µ with K-π, attractive Coulomb interaction is observed in UnLike-Sign; repulsive Coulomb is observed in Like-Sign.
- C+/C- ~ unity at k*~0 GeV/c: no space-time asymmetry, two particles are emitted at the same position and time. Agree with the muonic atom ionization

Kefeng Xin

Fitting Results (Reduced Mass Factor)

The mass difference between π and μ produces different CFs.

Take into account of reduced mass factor (into k*, not CF)

Kefeng Xin

Fitting Method

• Fit function includes parameter α , β , histogram A and 1/C

β*A+α*1/C

Minimum Chi-Square Method

$$\chi^{2} = \sum_{i} \left[(\beta * A_{i} + \alpha * 1/C_{i} - B_{i})/\sigma_{i} \right]^{2}$$

$$\Rightarrow \begin{cases} \sum_{i} (\beta * A_{i} + \alpha * 1/C_{i} - B_{i})/\sigma_{i} * A_{i}/\sigma_{i} = 0 \\ \sum_{i} (\beta * A_{i} + \alpha * 1/C_{i} - B_{i})/\sigma_{i} * 1/C_{i}/\sigma_{i} = 0 \end{cases}$$

$$\Rightarrow \begin{cases} \alpha = \frac{\left(\sum_{i} \frac{A_{i}B_{i}}{\sigma_{i}^{2}}\right)\left(\sum_{i} \frac{1}{C_{i}^{2}\sigma_{i}^{2}}\right) - \left(\sum_{i} \frac{B_{i}}{C_{i}\sigma_{i}^{2}}\right)\left(\sum_{i} \frac{A_{i}}{C_{i}\sigma_{i}^{2}}\right)}{\left(\sum_{i} \frac{A_{i}^{2}}{\sigma_{i}^{2}}\right)\left(\sum_{i} \frac{1}{C_{i}^{2}\sigma_{i}^{2}}\right) - \left(\sum_{i} \frac{A_{i}}{C_{i}\sigma_{i}^{2}}\right)^{2}} \\ \beta = \frac{\left(\sum_{i} \frac{A_{i}}{C_{i}\sigma_{i}^{2}}\right)\left(\sum_{i} \frac{A_{i}B_{i}}{\sigma_{i}^{2}}\right) - \left(\sum_{i} \frac{A_{i}^{2}}{\sigma_{i}^{2}}\right)\left(\sum_{i} \frac{B_{i}}{C_{i}\sigma_{i}^{2}}\right)}{\left(\sum_{i} \frac{A_{i}}{C_{i}\sigma_{i}^{2}}\right)^{2} - \left(\sum_{i} \frac{A_{i}^{2}}{\sigma_{i}^{2}}\right)\left(\sum_{i} \frac{A_{i}}{C_{i}\sigma_{i}^{2}}\right)} \end{cases}$$

Fitting Method

Fitting errors:

$$\begin{cases} \alpha = \frac{\left(\sum_{i} \frac{A_{i}B_{i}}{\sigma_{i}^{2}}\right)\left(\sum_{i} \frac{1}{C_{i}^{2}\sigma_{i}^{2}}\right) - \left(\sum_{i} \frac{B_{i}}{C_{i}\sigma_{i}^{2}}\right)\left(\sum_{i} \frac{A_{i}}{C_{i}\sigma_{i}^{2}}\right)}{\left(\sum_{i} \frac{A_{i}^{2}}{\sigma_{i}^{2}}\right)\left(\sum_{i} \frac{1}{C_{i}^{2}\sigma_{i}^{2}}\right) - \left(\sum_{i} \frac{A_{i}}{C_{i}\sigma_{i}^{2}}\right)^{2}} \\ \beta = \frac{\left(\sum_{i} \frac{A_{i}}{C_{i}\sigma_{i}^{2}}\right)\left(\sum_{i} \frac{A_{i}B_{i}}{\sigma_{i}^{2}}\right) - \left(\sum_{i} \frac{A_{i}^{2}}{\sigma_{i}^{2}}\right)\left(\sum_{i} \frac{B_{i}}{C_{i}\sigma_{i}^{2}}\right)}{\left(\sum_{i} \frac{A_{i}}{C_{i}\sigma_{i}^{2}}\right)^{2} - \left(\sum_{i} \frac{A_{i}^{2}}{\sigma_{i}^{2}}\right)\left(\sum_{i} \frac{1}{C_{i}^{2}\sigma_{i}^{2}}\right)} \\ \delta\alpha = \sqrt{\sum_{i} \left(\frac{\partial\alpha}{\partial B_{i}} \delta B_{i}\right)^{2} + \sum_{i} \left(\frac{\partial\alpha}{\partial A_{i}} \delta A_{i}\right)^{2} + \sum_{i} \left(\frac{\partial\alpha}{\partial C_{i}} \delta C_{i}\right)^{2}} \\ \alpha = (B - \beta A)C \\ \frac{\partial\alpha}{\partial B_{i}} = C_{i} \\ \delta\beta = \sqrt{\sum_{i} \left(\frac{\partial\beta}{\partial B_{i}} \delta B_{i}\right)^{2} + \sum_{i} \left(\frac{\partial\beta}{\partial A_{i}} \delta A_{i}\right)^{2} + \sum_{i} \left(\frac{\partial\beta}{\partial C_{i}} \delta C_{i}\right)^{2}} \\ \beta = \frac{B - \alpha/c}{A} \\ \frac{\partial\beta}{\partial B_{i}} = 1/A_{i} \end{cases}$$

PANIC 2014 Hamburg, Germany

Kefeng Xin