The Qweak Experiment: First Determination of the Weak Charge of the Proton

P.M. King Ohio University

for the Qweak Collaboration

20th Particles and Nuclei International Conference 28 August 2014, Hamburg University, Germany

Overview

- Qweak measures the parity violating elastic asymmetry in e-p scattering at $Q^2 = 0.025 \text{ GeV}^2$ in order to extract $Q_w(p)$ and $sin^2\theta_w$
 - Deviation from SM expectations would be a sign of new physics with a TeV mass-scale
- Qweak had three running periods in Hall C at Jefferson Lab
 - Run 0: (Jan-Feb 2011); about 1/25 of the total data set.
 Published Oct 2013; Phys.Rev.Lett. 111, 141803.
 - Run 1 (Feb-May 2011) Ongoing analysis; results likely within a year or so
 - Run 2 (Nov 2011-May 2012)
- Several ancillary measurements were taken to determine or constrain background processes or corrections

Parity violating electron scattering

$$A_{LR} = \frac{-G_{\mu} Q^{2}}{4\pi\alpha\sqrt{2}} \left[\frac{\varepsilon G_{E}^{\gamma} G_{E}^{Z} + \tau G_{M}^{\gamma} G_{M}^{Z} - (1 - 4\sin^{2}\theta_{W})\varepsilon' G_{M}^{\gamma} G_{A}^{e}}{\varepsilon (G_{E}^{\gamma})^{2} + \tau (G_{M}^{\gamma})^{2}} \right]$$

Qweak Overview

Jefferson Lab (6 GeV Era)

Qweak Installation: May 2010-May 2012

~1 year of beam in 3 running periods:

- Run 0 Jan – Feb 2011
- Run 1 Feb – May 2011
- Run 2 Nov 2011 – May 2012

Asymmetry ~250 ppb Error goal ~5 ppb

Qweak During Installation Quartz Bar

Acceptance-defining Pb collimator

Toroidal

Spectrometer

High-density concrete shielding wall

Detectors

Constructing the asymmetry

 Detector & beam monitor yields are integrated over 1/960 s helicity windows, grouped in quartet patterns with helicities +--+ or -++-

$$A_{msr} = A_{raw} + A_T + A_L + A_{reg}$$

$$A_{ep} = R_{tot} \frac{A_{msr}/P - \sum_{i=1}^{4} f_i A_i}{1 - f_{tot}}$$

 R_{tot} = includes radiative correction

and correction for light-variation Background corrections: Al

windows, neutrals, scattering from beamline, inelastic scattering

f = background fraction

A = background asymmetry

Beam Parameter Corrections

- Helicity correlated beam parameter variations can produce an asymmetry in the detectors
 - Symmetric detectors give partial cancellation
 - Large HC beam variations can be reduced by retuning
 - Measured detector-beam correlations can provide a correction

$$A_{corr} = \sum_{i=1}^{5} \left(\frac{\partial A}{\partial x_i} \right) \Delta x_i$$

(x,x',y,y',E)

Example: Detector Sensitivity to X position variation

Beam Parameter Corrections

- Two ways to determine sensitivity of the detector asymmetries to beam parameter variations
 - Regression: Natural jitter of beam parameters
 - Dithering: Occasional "large" driven variation of each beam parameter
- Corrections based on the two methods are in excellent agreement for this subset of our data where both are available

Run2 measured asymmetry

- Preliminary Blinded (arbitrary offset) Dithering Raw Regression -50 -160.0 ± 8.6 ppb -159.4 + 8.5 ppb -159.3 ± 8.5 ppb Reduced χ^2 :: 0.61 Reduced χ^2 :: 1.38 Reduced χ^2 :: 0.57 Asymmetry (ppb) -100 -150 -200 -250 6 6.5 7 7.5 8 8.5 q 9.5 10 Wien (monthly)
 - About 77% of the run2 data-set
 - Asymmetries have no corrections other than beam parameter correction

Some Backgrounds

- Target cell backgrounds
 - Recall that Qⁿ_{weak}~ 1
 Scattering from the aluminum cell walls will contribute a large asymmetry
 - Need dilution and Al asymmetry
- Inelastic scattering from LH2
 - Measure the asymmetry with reduced magnetic field

Two-boson exchange
 Longitudinal e- spin

 γ -Z box contributions lead to ~6% shift in Q°_{weak} with error estimates of about 1%

Transverse e- spin

2-γ exchange with transverse electron spin leads to a azimuthal asymmetry variation

Ancillary Measurements

Many additional measurements under analysis:

- Parity violating asymmetry:
 - elastic ²⁷Al
 - N $\rightarrow \Delta$ (E = 1.16 GeV, 0.877 GeV)
 - Near W = 2.5 GeV (related to γZ box)
 - Pion photoproduction (E = 3.3 GeV)

- Parity conserving transverse asymmetry:
 - elastic ep
 - elastic ²⁷Al, Carbon
 - $N \rightarrow \Delta$
 - Møller
 - Near W = 2.5 GeV
 - Pion photoproduction (E = 3.3 GeV)

Published 10/2/2013: PRL 111,141803 (2

First Results: Asymmetry

Kinematics: $\langle Q^2 \rangle = 0.0250 \pm 0.0006 \text{ GeV}^2$ $\langle E_{beam} \rangle = 1.155 \pm 0.003 \text{ GeV}$ Run 0 Results (1/25th of total dataset) $279 \pm 35 \; (\text{stat}) \; \pm 31 \; (\text{syst})$ \mathbf{A}_{ep} 0.05 0.1 0.15 0.2 0.25 0 0.3 0 • G0 HAPPEX -1 **×**SAMPLE -2 Qweak PVA4 Asymmetry [ppm] (4% of data, Q-weak 3 days @ 100%) -6 I -7 -8 Q^{2} [(GeV/c)²]

Extracting the Weak Charge

Global fit in Q^2 and θ to the reduced asymmetry

$$A_{LR}/A_0 = Q_{weak}^{p} + Q^2 B(Q^2) \qquad A_0 = -(G_{\mu}/4\pi\alpha\sqrt{2})Q^2$$

- Using 5 free parameters: C_{1u} , C_{1d} , ρ_s , μ_s , & the isovector part of G_A^{Z} - G_E^{S} , G_M^{S} , and G_A^{Z} use a dipole, $(1+Q^2/\lambda^2)^{-2}$, with $\lambda = 1$ GeV/c
- Employs all PVES data up to $Q^2 = 0.63 (GeV/c)^2$
 - On p, d, & ⁴He targets, forward and back-angle data
 SAMPLE, HAPPEX, G0, PVA4
- Uses constraints on isoscalar part of $G_A^{\ \ Z}$
 - Zhu, et al., PRD 62, 033008 (2000)
- All ep data corrected for E & Q² dependence of γ Z-box

Electroweak Corrections

 $Q_W^p = \left[1 + \Delta \rho + \Delta_e\right] \left[\left(1 - 4\sin^2\theta_W(0)\right) + \Delta_{e'} \right] + \Box_{WW} + \Box_{ZZ} + \Box_{\gamma Z}$

1.0

0.8

0.6

0.4

PRL **107**, 081801 (2011)

Qweak E

V+A

MS

- Most of these well known and precise calculated – except for γZ-box
- γZ-box: significant energy-dependent correction first identified by Gorchtei & Horowitz
- Hall *et al* model dependence constra by JLab PVDIS data

First Results: Quark Couplings

First Results: Weak Mixing Angle At tree level: $Q_{w}^{p} = 1 - 4\sin^{2}\theta_{w}$

Z°Y

Each experiment sensitive to different types of new physics

Curve from Erler, Kurylov, Ramsey-Musolf, PRD **68**, 016006 (2003) 4% of Qweak Data

"Teaser" with anticipated final errors

Summary

• First published result from the Qweak experiment

Phys.Rev.Lett. 111,141803 (2013)

$$A_{ep} = -279 \pm 35 \text{ (stat) } \pm 31 \text{ (syst) ppb}$$

4% of Qweak Data

Determination of the proton and neutron weak charge

 $Q_W^p(PVES) = 0.064 \pm 0.012$ $Q_W^p(SM) = 0.0710 \pm 0.0007$

 $\begin{aligned} Q_W^n(PVES + APV) &= -0.975 \pm 0.010 \\ Q_W^n(SM) &= -0.9890 \pm 0.0007 \end{aligned}$

In agreement with Standard Model predictions

- Final result expected ~year from now
 - Statistical error 5 times smaller, reduced systematics, no show stoppers found
 - Additionally, many ancillary results under analysis

The Qweak Collaboration

97 collaborators23 grad students10 post docs23 institutions

Institutions:

- ¹ University of Zagreb
- ² College of William and Mary
- ³ A. I. Alikhanyan National Science Laboratory
- ⁴ Massachusetts Institute of Technology
- ⁵ Thomas Jefferson National Accelerator Facility
- ⁶ Ohio University
- ⁷ Christopher Newport University
- ⁸ University of Manitoba,
- ⁹ University of Virginia
- ¹⁰ TRIUMF
- ¹¹ Hampton University
- ¹² Mississippi State University
- ¹³ Virginia Polytechnic Institute & State Univ
- ¹⁴ Southern University at New Orleans
- ¹⁵ Idaho State University
- ¹⁶ Louisiana Tech University
- ¹⁷ University of Connecticut
- ¹⁸ University of Northern British Columbia
- ¹⁹ University of Winnipeg
- ²⁰ George Washington University
- ²¹ University of New Hampshire
- ²² Hendrix College, Conway
- ²³ University of Adelaide

D. Androic,¹ D.S. Armstrong,² A. Asaturyan,³ T. Averett,² J. Balewski,⁴ J. Beaufait,⁵ R.S. Beminiwattha,⁶ J. Benesch,⁵
F. Benmokhtar,⁷ J. Birchall,⁸ R.D. Carlini,^{5, 2} G.D. Cates,⁹ J.C. Cornejo,² S. Covrig,⁵ M.M. Dalton,⁹ C.A. Davis,¹⁰ W. Deconinck,²
J. Diefenbach,¹¹ J.F. Dowd,² J.A. Dunne,¹² D. Dutta,¹² W.S. Duvall,¹³ M. Elaasar,¹⁴ W.R. Falk,⁸ J.M. Finn,² T. Forest,^{15, 16} D. Gaskell,⁵ M.T.W. Gericke,⁸ J. Grames,⁵ V.M. Gray,² K. Grimm,^{16, 2} F. Guo,⁴ J.R. Hoskins,² K. Johnston,¹⁶ D. Jones,⁹ M. Jones,⁵ R. Jones,¹⁷
M. Kargiantoulakis,⁹ P.M. King,⁶ E. Korkmaz,¹⁸ S. Kowalski,⁴ J. Leacock,¹³ J. Leckey,² A.R. Lee,¹³ J.H. Lee,^{6, 2} L. Lee,¹⁰
S. MacEwan,⁸ D. Mack,⁵ J.A. Magee,² R. Mahurin,⁸ J. Mammei,¹³, J.W. Martin,¹⁹ M.J. McHugh,²⁰ D. Meekins,⁵ J. Mei,⁵ R. Michaels,⁵ A.
Micherdzinska,²⁰ A. Mkrtchyan,³ H. Mkrtchyan,³ N. Morgan,¹³ K.E. Myers,²⁰ A. Narayan,¹² L.Z. Ndukum,¹² V. Nelyubin,⁹ Nuruzzaman,^{11, 12} W.T.H van Oers,^{10, 8} A.K. Opper,²⁰ S.A. Page,⁸ J. Pan,⁸ K.D. Paschke,⁹ S.K. Phillips,²¹ M.L. Pitt,¹³ M. Poelker,⁵
J.F. Rajotte,⁴ W.D. Ramsay,^{10, 8} J. Roche,⁶ B. Sawatzky,⁵ T. Seva,¹ M.H. Shabestari,¹² R. Silwal,⁹ N. Simicevic,¹⁶ G.R. Smith,⁵
P. Solvignon,⁵ D.T. Spayde,²² A. Subedi,¹² R. Subedi,²⁰ R. Suleiman,⁵ V. Tadevosyan,³ W.A. Tobias,⁹ V. Tvaskis,^{19, 8}
B. Waidyawansa,⁶ P. Wang,⁸ S.P. Wells,¹⁶S.A. Wood,⁵ S. Yang,² R.D. Young,²³ and S. Zhamkochyan ³

Spokespersons Project Manager Grad Students