

Resent results on the charmed hadron systems at Belle

Changwoo Joo Seoul National Univ Aug, 26, 2014

Outline

- CP violation and mixing in the neutral D meson system
 - $D^0 -> K_s^0 \pi^+ \pi^-$ [PRD 89, 091103(2014)]
 - D⁰->π⁰π⁰ [PRL 112, 211601(2014)]
 - D⁰->K⁺π⁻ [PRL 112, 111801(2014)]
- New measurements of M, Γ, B.F. of charm baryon
 - B.R. of Λ_c⁺->pK⁻π⁺ [PRL 113, 042002(2014)]
 - M, Γ of Σ_c(2455/2520)^{0/++} [PRD 89, 091102(2014)]
- Searching new charm baryon
 - $\Xi_{cc}^{+(+)}$, $\Xi_{c}(3055/3123)^{+}$ search [PRD 89, 052003(2014)]

Outline

- CP violation and mixing in the neutral D meson system
 - $D^0 -> K_s^0 \pi^+ \pi^-$ [PRD 89, 091103(2014)]
 - D⁰->π⁰π⁰ [PRL 112, 211601(2014)]
 - D⁰->K⁺π⁻ [PRL 112, 111801(2014)]

Neutral D meson system

BELLE

• The time evolution is given by

$$i\frac{d}{dt}\left(\begin{vmatrix} D^{0}(t) \\ \bar{D}^{0}(t) \end{vmatrix}\right) = \underbrace{\left(\mathbf{M} - \frac{i}{2}\mathbf{\Gamma}\right)}_{\mathcal{H}}\left(\begin{vmatrix} D^{0}(t) \\ \bar{D}^{0}(t) \end{vmatrix}\right)$$

• Flavor eigenstate is different from the mass eigenstate.

 $|D_{H,L}\rangle = p |D^0\rangle \pm q |\bar{D}^0\rangle$ (eigenstates of \mathcal{H}) $|D_{H,L}\rangle$ are mass eigenstates with masses m_H , m_L and widths Γ_H , Γ_L

• Using effective hamiltonian approximation, the solution is

$$\begin{aligned} \left| D^{0}(t) \right\rangle &= e^{-(\Gamma/2 + im)t} \left[\cosh\left(\frac{y + ix}{2} \Gamma t\right) \left| D^{0} \right\rangle + \frac{q}{p} \sinh\left(\frac{y + ix}{2} \Gamma t\right) \left| \bar{D}^{0} \right\rangle \right] \\ \left| \bar{D}^{0}(t) \right\rangle &= e^{-(\Gamma/2 + im)t} \left[\frac{p}{q} \sinh\left(\frac{y + ix}{2} \Gamma t\right) \left| D^{0} \right\rangle + \cosh\left(\frac{y + ix}{2} \Gamma t\right) \left| \bar{D}^{0} \right\rangle \right] \end{aligned}$$

$$x = \frac{m_H - m_L}{\Gamma}, y = \frac{\Gamma_H - \Gamma_L}{2\Gamma}, \Gamma = \frac{\Gamma_H + \Gamma_L}{2}, m = \frac{m_H + m_L}{2}$$

CP violation

For the small mixing system, |x|,|y|<<1

 $\frac{\mathrm{d}}{\mathrm{d}t} \left(N_{D^0 \to f} \right) \propto \left. e^{-\Gamma t} \right| \left\langle f \right| \mathcal{H} \left| D^0 \right\rangle + \frac{q}{p} \left(\frac{y + ix}{2} \Gamma t \right) \left\langle f \right| \mathcal{H} \left| \bar{D}^0 \right\rangle \right|^2$

- Indirect CP violation
 - $|p/q| \neq 1$: CP violation in mixing
 - $\arg(p/q) \neq 0, \pi$: CP violation in interference of decay w/ and w/o mixing
- Direct CP violation
 - $|A(D^0 \to f)|^2 \neq |A(\overline{D}^0 \to \overline{f})|^2$
- In the SM, CP violation on Singly Cabibbo-suppressed(SCS) charm decay is suppressed by O(V_{cb}V_{ub}/V_{cs}V_{us})~10⁻³ to compare with CP conserving decay.
- Observing CP violation in experiment could indicate new physics.

D^{0} -> $K_{s}^{0}\pi^{+}\pi^{-}$ Introduction

- Search for indirect CP violation analysis using time dependent amplitude analysis of D^0 ->K_s⁰ $\pi^+\pi^-$.
 - So far no evidence of indirect CP violation
 - 1-|q/p| = +0.12 ± 0.17 [HFAG]
- Direct measurement of x, y w/, w/o CP conservation.

 $D^{0} - K_{s}^{0}\pi^{+}\pi^{-}$ Analysis

0.6045

0.0702

0.0221

0.0026

0.0016

0.0046

0.0005

0.0001

0.0007

0.0013

0.2000

0.0057

0.0141

0.0012 0.1288

 D^{0} -> $K_{s}^{0}\pi^{+}\pi^{-}$ Result

Fit type	Parameter	Fit result
No CPV	x(%)	$0.56 \pm 0.19^{+0.03+0.06}_{-0.09-0.09}$
	y(%)	$0.30 \pm 0.15^{+0.04 + 0.03}_{-0.05 - 0.06}$
CPV	x(%)	$0.56 \pm 0.19^{+0.04+0.06}_{-0.08-0.08}$
	y(%)	$0.30 \pm 0.15^{+0.04 + 0.03}_{-0.05 - 0.07}$
	q/p	$0.90\substack{+0.16+0.05+0.06\\-0.15-0.04-0.05}$
	$\arg(q/p)(^{\circ})$	$-6\pm11\pm3^{+3}_{-4}$

Mixing parameter shows no difference between w/, w/o CP.

Proper decay time : 410.3 ± 0.6 fs. Consistent with W.A.

The |q/p| value is consistent with no CP.

2014-08-26

 $D^{0} \rightarrow \pi^{0}\pi^{0} - direct CP violation$

$$A_{CP} = \frac{\Gamma(D^0 \to \pi^0 \pi^0) - \Gamma(\overline{D}{}^0 \to \pi^0 \pi^0)}{\Gamma(D^0 \to \pi^0 \pi^0) + \Gamma(\overline{D}{}^0 \to \pi^0 \pi^0)}$$

• Because of flavor tagging, study D*

$$A^{\text{reco}} = \frac{N(D^{*+}) - N(D^{*-})}{N(D^{*+}) + N(D^{*-})}$$

• The only existing measurement of $D^0 - > \pi^0 \pi^0$ is from CLEO, A_{CP} = (+0.1 ± 4.8)%. PRD 63, 071101 (2001).

BELLE

$D^0 \rightarrow \pi^0 \pi^0$ - Analysis

ΔM (GeV/c²)

- $D^{*+/-} \rightarrow D^{0}(\pi^{0}\pi^{0})\pi_{s}^{+/-}$, $D^{0}(K_{s}^{0}\pi^{0})\pi_{s}^{+/-}$
- D⁰ signal yield : 34460 ± 273

$D^0 \rightarrow \pi^0 \pi^0$ - Result

• $D^0 \to \pi^0 \pi^0$ mode

 $A_{CP}(D^0 \to \pi^0 \pi^0) = (-0.03 \pm 0.64 \pm 0.10)\%$

- An order of magnitude better precision than prev result. No evidence of CP violation.
- $D^0 \rightarrow K_s^0 \pi^0 \mod (K^0 \min subtracted)$ $A_{CP}(D^0 \rightarrow K_s^0 \pi^0) = (-0.21 \pm 0.16 \pm 0.07)\%$
 - No evidence of CP violation

$D^0 \rightarrow K^+\pi^- - D^0\overline{D}^0$ mixing

- BELLE
- Mixing phenomena are well established for K⁰, B⁰, B_s⁰ mesons.
- D⁰ mixing has also recently been observed in hadron collider. [PRL 110,010001(2012), PRL 111, 231802(2013)]
- This is first observation of D⁰ mixing in an e⁺e⁻ collision experiment.

$D^0 - K^+\pi^- - D^0\overline{D}^0$ mixing with decay

- D^0 ->K⁺ π^- : Wrong sign decay
- D^0 ->K⁻ π^+ : Right sign decay

• Time dependent ratio of WS to RS decay rate

$$R(\tilde{t}/\tau) = \frac{\Gamma_{\rm WS}(\tilde{t}/\tau)}{\Gamma_{\rm RS}(\tilde{t}/\tau)} \approx R_D + \sqrt{R_D} y' \frac{\tilde{t}}{\tau} + \frac{x'^2 + y'^2}{4} \left(\frac{\tilde{t}}{\tau}\right)^2$$

• With |x| << 1, |y| << 1, \tilde{t} is proper decay time, τ is D⁰ decay time, R_D is the ratio of DCS and CF decay amplitude,

$$x' = x\cos\delta + y\sin\delta, y' = x\cos\delta - y\sin\delta$$

 $\delta\,$ is strong phase difference between DCS and CF decay amp.

D⁰->K⁺π⁻ - Analysis

- In the B factory, time resolution effect must be taken into account. $R(t/\tau) = \frac{\int_{-\infty}^{+\infty} \Gamma_{\rm WS}(\tilde{t}/\tau) \mathcal{R}(t/\tau - \tilde{t}/\tau) d(\tilde{t}/\tau)}{\int_{-\infty}^{+\infty} \Gamma_{\rm RS}(\tilde{t}/\tau) \mathcal{R}(t/\tau - \tilde{t}/\tau) d(\tilde{t}/\tau)}$
- Resolution function : $\mathcal{R}(t/\tau \tilde{t}/\tau)$
- Time integrated D* reconstruction.

$$\begin{split} \Delta M &\equiv M(D^{*+} \to D^0(\to K\pi)\pi_s^+) \\ &- M(D^0 \to K\pi) \end{split}$$

 $N(RS) = 2980710 \pm 1885$ $N(WS) = 11478 \pm 177$

BELLE

t/τ

PANIC 2014

D^0 ->K⁺ π ⁻ - Result

TABLE I. Results of the time-dependent fit to $R(t/\tau)$, where DOF stands for the degrees of freedom. The uncertainties are statistical and systematic combined.

Test hypothesis (χ^2/DOF)	Parameters	Fit results (10 ⁻³)	R _D	Correlation coefficient y'	x'^2
Mixing (4.2/7)	$R_D \\ y' \\ x'^2$	$\begin{array}{c} 3.53 \pm 0.13 \\ 4.6 \pm 3.4 \\ 0.09 \pm 0.22 \end{array}$	1	-0.865 1	+0.737 -0.948 1
No mixing (33.5/9)	R_D	3.864 ± 0.059			

- "Mixing" hypothesis excludes the "non-mixing" hyphothesis at $\chi^2/DOF = 29.3/2$, 5.1 σ .
- This is first observation of D⁰ mixing in an e⁺e⁻ collision experiment.

Outline

- New measurements of M, Γ, B.F. of charm baryon
 - B.R. of Λ_c⁺->pK⁻π⁺ [PRL 113, 042002(2014)]
 - M, Γ of Σ_c(2455/2520)^{0/++} [PRD 89, 091102(2014)]

B.F. of $\Lambda_c^+ - pK^-\pi^+$ - Introduction

- A number of charmed baryon s decay into Λ_c^+ .
- $\Lambda_c^+ -> pK^-\pi^+$ is the reference mode for the measurement of branching fractions of the Λ_c^+ baryon, it's important to measure the absolute branching fraction.

	Mode	F	Fraction (Γ_i/Γ)
	Hadronic modes with a	p: S	= -1 final states
1	pK ⁰		(2.3 \pm 0.6)%
2	$p K^- \pi^+$	[a]	(5.0 \pm 1.3) %
3	$p\overline{K}^{*}(892)^{0}$	[<i>b</i>]	(1.6 \pm 0.5) %

- PDG B.F. is model dependent.
- Estimating the precise B.F. with model independent is important

B.F. of $\Lambda_c^+ - pK^-\pi^+$ - Analysis

• Reconstruct the Λ_c^+ - inclusively using missing mass of decay

$$e^+e^- \to c\bar{c} \to D^{(*)-}\bar{p}\pi^+\Lambda_c^+$$

• $N_{inc}^{\Lambda_c} = 36447 \pm 432$

- Reconstruct the $\Lambda_c^+ \rightarrow pK^-\pi^+$ exclusively within inclusive sample of Λ_c^+ .
 - $N_{excl}^{SR} = 1457 \pm 44$
 - $N_{excl}^{\text{SB}} = 332 \pm 27$

B.R. of $\Lambda_c^+ \rightarrow pK^-\pi^+$ - Result

- $\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+) = 6.84 \pm 0.24(\text{stat}) + 0.21 0.27(\text{sys}) \%$
- Cross check
 - Using different fitting method, $\mathcal{B}(\Lambda_c^+ \rightarrow pK^-\pi^+) = (6.78 \pm 0.24)\%$
 - Using $e^+e^- \to D^{(*)0}\bar{p}\Lambda_c^+$, $\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+) = (7.04 \pm 0.38)\%$
- Good agreement with result.
- This result improves the previous measurement by factor of 5.

 $\Sigma_{c}(2455/2520)^{0/++}$ - Introduction

	Bag model	Quark model	Relativistic quark diquark	QCD	Lattic non- relativistic QCD
Σ _c (2455)	2.393(GeV/c ²)	2.455	2.439	2.40±0.31	2.407/2.452
Σ _c (2520)	2.489	2.519	2.518	2.56±0.24	2.482/2.538

- The Σ_c^{++} is heavier than Σ_c^{0} with large error although u quark is lighter than d quark.
- Property of $\Sigma_c (2455/2520)^{0/++}$ has large uncertainty, decay width uncertainty is 10% of their central value.
- Precise measurement of mass and width of $\Sigma_c(2455/2520)^{0/++}$ is necessary.

 $\Sigma_{c}(2455/2520)^{0/++}$ - Analysis

• Σ_c(2455/2520)^{0/++} -> Λ_c⁺(->pK⁻π⁺) π_s^{0/+}

• χ^2 /ndf = 350/347 and χ^2 /ndf = 343/350 for $\Sigma_c^{0/++}$.

Σ_c(2455/2520)^{0/++} - Result

	ΔM_0 (MeV/ c^2)	Γ (MeV/ c^2)	M_0 (MeV/ c^2)
$\overline{\Sigma_c(2455)^0}$	$167.29 \pm 0.01 \pm 0.02$	$1.76 \pm 0.04^{+0.09}_{-0.21}$	$2453.75 \pm 0.01 \pm 0.02 \pm 0.14$
$\Sigma_{c}(2455)^{++}$	$167.51 \pm 0.01 \pm 0.02$	$1.84 \pm 0.04^{+0.07}_{-0.20}$	$2453.97 \pm 0.01 \pm 0.02 \pm 0.14$
$\Sigma_{c}(2520)^{0}$	$231.98 \pm 0.11 \pm 0.04$	$15.41 \pm 0.41^{+0.20}_{-0.32}$	$2518.44 \pm 0.11 \pm 0.04 \pm 0.14$
$\Sigma_{c}(2520)^{++}$	$231.99 \pm 0.10 \pm 0.02$	$14.77 \pm 0.25^{+0.18}_{-0.30}$	$2518.45 \pm 0.10 \pm 0.02 \pm 0.14$

• The result shows better uncertainty than previous result in PDG.

PDG value	Mass(MeV)	Width(MeV)
Σ _c (2455) ⁺⁺	2453.98 ± 0.16	2.26 ± 0.25
Σ _c (2455) ⁰	2753.74 ± 0.16	2.16 ± 0.26
Σ _c (2520) ⁺⁺	2517.9 ± 0.6	14.9 ± 1.5
Σ _c (2520) ⁰	2518.8 ± 0.6	14.5 ± 1.5

Outline

• Searching new charm baryon

• $\Xi_{cc}^{+(+)}$, $\Xi_{c}(3055/3123)^{+}$ search - [PRD 89, 052003(2014)]

+(+) Search - Introduction

- There are no experimentally established doubly charmed baryons.
- The SELEX collaboration reported evidence of Ξ_{cc}^+ in the $\Lambda_c^+ K^- \pi^+$ and pD^+K^- final state with a mass of about 3.52GeV/c².

[PRL 89, 112001 (2002)]

[PLB 628, 18 (2005)]

- However, the result have not been supported by FOCUS, BABAR, Belle, LHCb.
- This study improves the search using more data and decay channel. 2014-08-26

$\Xi_{cc}^{+(+)}$ Search – Reconstruction (1)

- $\Xi_{cc}^{+(+)} \rightarrow \Lambda_{c}^{+}K^{-}\pi^{+}(\pi^{+})$
- Λ_c⁺->pK⁻π⁺, pK_s⁰.
- Mass range 3.2~4.0GeV/c²
- Local significance is lower than 3δ for whole mass region.
- Upper limit of production cross section and B.F. with 95% C.L. is around 10fb⁻¹.

$\Xi_{cc}^{+(+)}$ Search – Reconstruction (2)

- $\Xi_{cc}^{+(+)} \rightarrow \Xi_{c}^{0}\pi^{+}(\pi^{+}).$
- Ξ_c⁰-> Ξ⁻π⁺, ΛΚ⁻π⁺, pK⁻K⁻ π⁺.
- No significant signal.
- The highest signal is around 3.553GeV/c².
- This signal it not significant with look elsewhere effect.

Ξ_c(3055/3123)⁺ Search

- Search the Ξ_c(3055/3123)⁺
- $\Xi_c \rightarrow \Lambda_c^+ K^- \pi^+$
- Ξ_c (3055)⁺ signal with 6.8σ.
- No peak of Ξ_c (3123)⁺
 - 95%C.L. upper limit of Cross section and B.F is 1.6±0.6±0.2fb

BELLE

 $I(J^P) = ?(?^?)$ Status: *

$\Xi_{cc}^{+(+)}$, $\Xi_{c}(3055/3123)^{+}$ Conclusion

- Search the $\Xi_{cc}^{+(+)}$
 - Using more data (980fb⁻¹)
 - Using additional decay channel
 - No significant signal.
- Search the $\Xi_{c}(3055/3123)^{+}$
 - Ξ_c (3055)⁺ signal with 6.8 σ .
 - No peak of Ξ_c (3123)⁺

BELLE

Summary

- CP violation and mixing in the neutral D meson system.
 - $D^0 -> K_s^0 \pi^+ \pi^-$ Indirect CPV measurement : no CPV.
 - $D^0 \rightarrow \pi^0 \pi^0$ Direct CPV measurement : no CPV.
 - D^0 ->K⁺ π^- First observation of D^0 mixing in e⁺e⁻ collider.
- New measurements of M, Γ, B.F. of charm baryon.
 - B.R. of $\Lambda_c^+ pK^-\pi^+ B.F.$ measurement with factor 5 improvement.
 - M, Γ of $\Sigma_c(2455/2520)^{0/++}$ Precise M, Γ measurement.
- Searching new charm baryon
 - $\Xi_{cc}^{+(+)}$ Search No evidence of $\Xi_{cc}^{+(+)}$.
 - $\Xi_c(3055)^+$ signal, no peak of $\Xi_c(3123)^+$.