Laser spectroscopy of the hyperfine splitting energy in the ground state of muonic hydrogen

RIKEN

Masaharu Sato

Introduction

structure of the proton is one of the most fundamental observables in the atomic and nuclear physics

(radius, form factor etc)

Muonic hydrogen atom an exotic atom consisted with μ- and p

 $m_{\mu}/m_{\rm e} \sim 207, R \sim a_{\rm B}/207$

probability within the proton : $(r_p/a_B)^3 = (\alpha m_{\mu p} r_p)^3 \sim 8 \times 10^6$

bound μ feels the effect of the proton structure

Study the internal structure of proton probed by muonic hydrogen

Proton radius puzzle

Still unsettled question:

- errors in the measurements?
- structure-dependent corrections are wrong?
- QED needs modification (in μ p interaction)?
- _new physics beyond the standard model?

How is the radius by magnetic moment distribution?

(Zemach radius, magnetic radius)

Physics motivation

proton Zemach radius

$$R_Z = \int d^3r \, r \int d^3r' \rho_E(r') \rho_M(r-r')$$

convolution of charge and magnetic moment distribution(ρ_E , ρ_M) good physics quantities for studying proton electronic & magnetic structure

Past measurements on Zmeach radius

hydrogen spectroscopy

R_z =1.037(16) fm Dupays et al., PRA(2003) =1.047(19) fm Volotka et al., EPJ(2005)

e-p scattering

R_z =1.086(12) fm Friar & Sick, PLB(2004) =1.045(4) fm Distler et al., PLB(2011)

• muonic hydrogen 2S HFS

Iatest value of e-p and H spectroscopy are consistent within their errors

 \blacktriangleright µ-p value differs? But accuracy is insufficient to verify.

New measurement of $\mu p \ IS \ \Delta E_{HFS}$

► muonic hydrogen IS HFS energy ← not measured precisely before

laser spectroscopy : $0.183 \text{ eV} = -6.8 \mu \text{m} (=-44 \text{ THz})$

mid infrared laser is needed

Our goals :

• determine IS ΔE_{HFS} with an accuracy of ~ 100 MHz (~ 2 ppm)

the 1st precise measurement of g.s. ΔE_{HFS} of μ -p

fundamental quantity of μ -p system

due to accuracy of frequency

(can determine proton structure correction (δ^{str}) with ~ppm accuracy)

• derive Zemach radius from ΔE_{HFS}

$$\Delta E_{HFS}^{exp} = E_F (1 + \delta_{QED} + \delta_{Zemach} + \delta_{recoil} + \delta_{pol} + \delta_{hvp})$$

$$\delta_{Zemach} = -2\alpha m_{\mu p} R_Z + O(\alpha^2)$$

$$R_Z = \{ (E_F (1 + \delta_{QED} + \delta_{recoil} + \delta_{pol} + \delta_{hvp}) - \Delta E_{HFS}^{exp} \} / 1.282$$

as same with hydrogen spectroscopy

Expected precision of Zemach radius

$$R_{Z} = \left\{ \left(E_{F} \left(1 + \delta_{QED} + \delta_{recoil} + \delta_{pol} + \delta_{hvp} \right) - \Delta E_{HFS}^{exp} \right\} / 1.281 (<10?)$$
(need radiative correction)
$$1130(1) \text{ ppm} \quad 1700(1) \text{ ppm} \quad 460(80) \text{ ppm} \quad 20(2) \text{ ppm}$$

Dupays et al., PRA 2003

 $R_z = 1.0??(13) \text{ fm}$

improved factor ~3 from PSI results, but δ_{pol} is dominated in error.

We need help of theorists to improve precision.

	Hydrogen		Muonic hydrogen	
E^{F}	Magnitude 1418.84 MHz	Uncertainty 0.01 ppm	Magnitude 182.443 meV	Uncertainty 0.1 ppm
$\delta^{ ext{QED}}$ $\delta^{ ext{rigid}}$ $\delta^{ ext{recoil}}$ $\delta^{ ext{pol}}$ $\delta^{ ext{hvp}}$	$ \begin{array}{r} 1.13 \times 10^{-3} \\ 39 \times 10^{-6} \\ 6 \times 10^{-6} \\ 1.4 \times 10^{-6} \\ 10^{-8} \end{array} $		$ \begin{array}{r} 1.13 \times 10^{-3} \\ 7.5 \times 10^{-3} \\ 1.7 \times 10^{-3} \\ \underline{0.46 \times 10^{-3}} \\ 0.02 \times 10^{-3} \end{array} $	$ \begin{array}{r} 10^{-6} \\ 0.1 \times 10^{-3} \\ 10^{-6} \\ 0.08 \times 10^{-3} \\ 0.002 \times 10^{-3} \\ \end{array} $

improvement of proton polarizability correction (δ_{pol}) drastically reduces uncertainty of Rz (as same with hydrogen case)

hydrogen case 1.4(6) ppm muon case 460(80) ppm

check with R_Z determined by "electronic" and "muonic" measurement •7

Experimental principle

Experimental principle (1)

Experimental principle (2)

polarized µ- decay e⁻¹S₀

more decay electrons in opposite direction of muon spin

 \rightarrow spin polarization (= resonance frequency) can be detected decay asymmetry of muons

Conceptual design of experimental setup

- I) H₂ target
- 2) tunable mid-infrared laser
- 3) decay electron counter(forward and backward)

•11

Feasibility?

$$\tau_{quench}$$
 VS τ_{μ} (= ~2.2 us)

Collisional quench rate

 \Box F=1 \rightarrow F=0 quench by collision with surrounding atoms

liquid H_2 then $\tau = 50$ ps (Polarization is lost quickly before muon decay)

 \rightarrow gas target is indispensable

If $\Phi = 0.01\%$ LHD (liquid hydrogen density), then $\tau_{quench} = 500$ ns

mid-infrared laser system

tunable mid-infrared laser (developed in RIKEN Wada group)

frequency ~6.8 um = ~44 THz band width ~50 MHz repetition ~ 50 Hz double pulse 10 mJ x 2 set = 40 mJ

- Wavelength will be controlled by seeded OPO with ZnGeP₂ nonlinear crystal.
- 6.8 µm seed light will be provided from Quantum cascade laser.

40 mJ laser power is possible

laser-induced transition probability

$F=0 \rightarrow F=1$ transition probability

$$\overline{P} = 2 \times 10^{-5} \frac{E}{S\sqrt{T}}$$

E/S : laser power density [J/m²], T : temperature [K] NIM B281(2012)72 & D. Bakalov, private communication

ex. E = 40 mJ, $S = 4 \text{ cm}^2$, T = 20 K, then $P = 4.5 \times 10^{-4}$ too small !

multi-pass cavity

Beam time estimation

□ RIKEN-RAL pulse muon source

Parameters for estimation

- negative muon 2.4×10⁴ [s⁻¹] (50 Hz repetition) $P_{\mu} = 40 \text{ MeV/c}$ $dp/p = \pm 4 \%$
- laser (~6.8 um)
 Power 40 mJ
 repetition 50 Hz
 band width 50 MHz
 mirror R 99.95 %
- H₂ target
 density 0.0001 LHD

□ scanning region and steps scan interval : 100 MHz scan region: ±5.7 GHz (~ $\delta^{\text{Zemach}} + \delta^{\text{pol}}$) Significance(σ) = $\frac{\text{signal}}{fluctuation} = \frac{(N_F - N_B)}{\sqrt{(N_F + N_B)}}$

beam time estimation (3-stage scan): (1) 4.8 hours x120 points for $\sigma > 3$ scan = 25 days (2) 13.4 hours x20 points for $\sigma > 5$ scan = 11 days (3) 26 hours x 7 points for $\sigma > 7$ scan = 8 days

44 days in total

Summary

We propose a new measurement of ground state hyperfine splitting energy in muonic hydrogen with mid-infrared laser

□ Accuracy of ΔE_{HFS} : ~ 2 ppm, derive Zemach radius of proton (We need help from theory for further precision)

Experiment is feasible in RIKEN RAL muon facility with pulsed muon source and the present laser technique

Collaboration

K. Ishida, M. Iwasaki, Y. Ma, T. Matsuzaki, S. Okada, Y. Oishi, M. Sato RIKEN Nishina Center, RIKEN

K. Midorikawa, N. Saito, S. Wada

RIKEN Center for Advanced Photonics, RIKEN

K. Tanaka, Y. Matsuda

Graduate of School of Arts and Science, The University of Tokyo

S. Kanda

Department of Physics, The University of Tokyo

