

Particles and Nuclei International Conference 24 - 29 August 2014

Alexander Zinchenko (VBLHEP, JINR, Dubna)

On behalf of the MPD & BM@N collaborations

RELATIVISTIC HEAVY ION PHYSICS AT JINR: STATUS OF THE BM@N AND MPD EXPERIMENTS

OUTLINE

MPD/NICA project

- Research program at MPD/NICA
- MPD detector: R&D and performance studies
- Current status of the MPD/NICA project
- BM@N project
 - Research program at BM@N
 - Proposed detector setup
 - Detector subsystems
 - Time schedule for BM@N setup development

Summary

MPD/NICA PROJECT

8/25/2014

COMPLEX NICA

New flagship project at JINR (Dubna)
Based on the technological development of the Nuclotron facility
Optimal usage of the existing infrastructure
Modern facility incorporating new technological concepts

NICA parameters

Beams: p,d(h)..¹⁹⁷Au⁷⁹⁺ Collision energy: 4-11A GeV (nuclei) Luminosity: 10²⁷ cm⁻²s⁻¹ (Au), 10³² (p) 2 Interaction points: MPD and SPD Fixed target: 1-6A GeV beams (BM@N)

RESEARCH PROGRAMS @ NICA

QCD matter under extreme conditions

- Study of QCD phase diagram
 - deconfinement phase transition
 - mixed phase, Critical End Point
- In-medium properties, EoS
 - chiral symmetry restoration

Spin physics

- Nucleon spin structure
- Hadroproduction with polarized beams

Applied research

- Cryogenic, material science, transmutation
- Medicine

Accelerator physics

- Superconducting magnets for high intensity ion beams
- Electron cooling for relativistic heavy ions

MPD PHYSICS TASKS AND OBSERVABLES

• Bulk properties, EOS

- particle yields & spectra, ratios, femtoscopy, flow measure: γ , π , K, p, Λ , Ω , (anti)particles, light nuclei
- In-Medium modification of hadron properties onset of low-mass dilepton enhancement <u>measure:</u> ρ , ω , $\phi \rightarrow e^+e^-$
- Deconfinement (chiral) phase transition at high r_B enhanced strangeness production
 Chiral Magnetic (Vortical) effect, L polarization
- QCD Critical Point
 - event-by-event fluctuations and correlations
- Strangeness in nuclear matter hypernuclei, exotica

8/25/2014

QCD PHASE DIAGRAM. PROSPECTS FOR NICA

Energy Range of NICA

- Highest net baryon density
- Energy range brackets onset of deconfinement
- Complementary to the RHIC/BES, FAIR and CERN experimental programs

PHYSICAL REVIEW C 74, 047901 (2006)

 10^{2}

LINCOLUCE:

 10^4 $\sqrt{s_{NN}}$ (GeV)

DENSE MATTER @ NICA. IN-MEDIUM MODIFICATION

- Changes of the particle properties (shift and broadening of spectral functions) in dense medium. Dileptons are ideal probes
- NICA is well situated to study in-medium effects due to highest baryon densities

Particle	Y	′ields	Decay	BR	Effic. %	Yield/1 w
	4π	y=0	mode			
ρ	31	17	e⁺e⁻	4.7 · 10 ⁻⁵	35	7.3 · 10 ⁴
ω	20	11	e⁺e⁻	7.1 · 10 ⁻⁵	35	7.2 · 10 ⁴
φ	2.6	1.2	e⁺e⁻	3 · 10 ⁻⁴	35	1.7 · 10 ⁴

8

8/25/2014

QCD PHASE DIAGRAM. CRITICAL END POINT

Central Au+Au collisions

Trajectories calculated by a 3-fluid hydrodynamics model Toneev & Ivanov If the trajectory is in the vicinity of the critical endpoint – abnormal fluctuations can be observed

Requirements to the apparatus:

- Large uniform acceptance
- Careful event characterization

HYPERNUCLEI @ NICA

Motivation:

- Precise information on Y-N interaction: nuclear EOS, astrophysics
- Hypernuclei ground, excited states and life times: critical assessments
- for QCD calculations and model predictions
- Production mechanism of bound states with hyperons: coalescence versus spectators-participants interactions, exotic states, dibaryons

To study hyper-nuclei, MPD detector must be able to detect and identify light nuclei in a wide rapidity range as well to have a good capability for precise secondary vertex reconstruction

Hypernuclei production enhanced at high baryon densities (NICA)

A.Andronic, P.Braun-Munzinger, J.Stachel, H.Stocker

Particle	Yield/10 w (NICA)			
	8 GeV	11 GeV		
${}_{\Lambda}H^{3}$	4.5 · 10 ³	1.6 · 10 ³		

AU+AU COLLISIONS AT NICA (MODEL PREDICT.)

 dN/dη (charged) ~ 500 at midrapidity in central Au+Au

• $< p_t > ~ 300 \text{ MeV/c} \text{ (pions, } |\eta| < 1.0 \text{)}$

 Centrality: eta-range from η=2 to 5 (granularity for event plane)

8/25/2014

8/25/2014

THE MPD APPARATUS

Magnet: 0.5 T superconductor Tracking: TPC, ECT, IT ParticleID: TOF, ECAL, TPC T₀, Triggering: FFD Centrality, Event plane: ZDC <u>Stage 1:</u> TPC, Barrel TOF & ECAL, ZDC, FFD

<u>Stage 2:</u> IT + EndCaps (tracker, TOF, ECAL)

<u>Requirements to the apparatus:</u>

- Hermeticity, homogenous acceptance : 2π in azimuthal angle
- Highly efficient 3-D track reconstruction ($|\eta| < 2$), high resolution vertexing
- Powerful PID: π/K up to 1.5 GeV/c, K/p up to 3 GeV/c, ECAL for γ , e
- Careful event characterization: impact parameter & event plane reconstruction
- Minimal dead time, event rate capability up to ~ 6 kHz

8/25/2014

MPD TRACKING SYSTEM - TPC

MPD TPC

Dimensions: 4 m x 3 m Drift Length: 170 cm Gas: 90% Argon + 10% Methane Readout: 2x12 sectors (MWPC or GEM) Composite materials – transparent detector!

TIME OF FLIGHT (TOF) (JINR + HEFEI, BEIJING(CHINA)

<u>PID</u>: e/h-0.1..0.35 GeV/c p/K-0.1..1.5 GeV/c K/p-0.1..2.5 GeV/c

Basic requirements:

• Coverage: > 30 m², $|\eta|$ < 3 (barrel+endcap) • σ ~ 80 ps (100 ps overall)

Dimensions:

barrel: 5 m (length), 2.5 m (diameter) endcap: 2 x 2.5 m (diameter) disks **Gas:** 90% $C_2H_2F_4 + 5\% iC_4H_{10} + 5\% SF_6$ **Segmentation** (barrel): 12 sectors x 55 modules (62x7 cm²) module: 10-gap RPC

Resistive Plate Chambers

8/25/2014

ELECTROMAGNETIC CALORIMETER (ECAL)

ECAL aimed at detecting electrons and gammas and has to fulfill:

- High granularity and hermeticity
- Energy, spatial (and also timing) resolutions
- Manufacturing technology & cost
 - $s/E \sim 3\%/\sqrt{E} + const$
 - s_{TOF} ~ 150 ps

VBLHEP & DLNP (JINR) + ISM (Kharkiv)

"Shashlyk" sampling calorimeter: Pb (0.35 mm) + Scint. (1.5 mm) $4x4 \text{ cm}^2$, L ~35 cm (~ 14 X₀) read-out: WLS fibers + MAPD

MPD PARTICLE IDENTIFICATION (PID) SYSTEM

Requirements :

- Hadron (π, K, p) identification up to 3 GeV/c, midrapidity nuclei PID
- Electron PID with hadron suppression up to 10⁵
- Secondary vertex reconstruction hyperons & hypernuclei @ midrapidity

PID methods (in combination with a measurement of momentum in the B-field): Fig.1: Energy loss (dE/dx) in the TPC gas Fig.2: Combined dE/dx and TOF Fig.3: Energy deposit in ECAL (γ and e[±])

MPD PERFORMANCE: TRACKING

Fig.1: Track reconstruction efficiency High efficiency: down to 100 MeV/c

Fig.2: Momentum resolution. $\Delta p/p < 2\% @ p_T < 1.5 \text{ GeV/c}$

Fig.3: Primary vertex resolution $\sigma_x \& \sigma_z < 0.15 \text{ mm}$ in central collisions at track multiplicity in TPC >500

17

18

MPD PERFORMANCE: START VERSION (TPC & TOF)

Figures: Reconstruction of Λ , Ξ , Ω hyperons

Detectors: start version of MPD with up-to-date TPC & TOF; **Generator:** UrQMD, Au+Au @ 9A GeV, central (0-3 fm), 10k - 500k events. (30 sec. - 28 min. of data taking time at NICA) Realistic PID in TPC&TOF, realistic tracking and secondary vertex finding technique allow to reconstruct multistrange hyperons already with start version of MPD.

MEASUREMENT OF HYPER-TRITONS AT NICA/MPD

Motivation

- Study of YN interactions in nuclear matter
- Enhanced production of multi-strange composites at high baryon densities

A signal of 70 3 H is seen (one day of data taking)

<u>Analysis</u>

- 500k central Au+Au @ 5A GeV (LAQGSM model [1])
- Realistic tracking & secondary vertex finding technique
- Track quality cuts & Particle ID for secondaries

[1] J. Steinheimer, K. Gudima, et al, Phys. Lett. B 714 (2012) pp 85-91

MPD PERFORMANCE FOR DILEPTONS (STAGE'1)

Fig. 1: Invariant mass for dileptons in central Au+Au at \sqrt{s} = 7 GeV (background subtracted) Fig.2: Dilepton phase-space (M_{inv} ~ 0.8) Fig. 3: Signal-to-Background ratio for dileptons vrs. charged track density in HIC experiments

NICA PHYSICS PLAN (STAGE 1)

In the beginning an energy-system size scan will be performed at NICA-MPD with the listed beam species varying the collisions energy from 4 to 11 GeV in steps of 1-2 GeV.

Beam	Luminosity	Data sample			
	√s=4 GeV	√s=11 GeV	per 1 week at √s = 4 GeV		
р	10 ³²	10 ³²	1.5 · 10 ¹⁰		
¹² C	4 [.] 10 ²⁸	2 · 10 ²⁹	1.5 · 10 ¹⁰		
⁶⁴ Cu	6 · 10 ²⁷	3.5 · 10 ²⁸	5 · 10 ⁹		
¹²⁴ Xe	8 · 10 ²⁶	6 · 10 ²⁷	1 · 10 ⁹		
¹⁹⁷ Au	1.5 ·10 ²⁶	1027	3 · 10 ⁸		

Measurements of hadrons (π , K, (anti)p, (anti)hyperons, light (anti)nuclei and dilepton spectra as a function of energy, system size, centrality, p_T , rapidity and azimuthal angle.

The strategy

- Localize the QCD CEP, then investigate in detail the critical region (in finer steps)
- Detailed study of the LMR dilepton enhancement in the unexplored region of the highest baryon density. If an indication for dropping mass found \rightarrow detailed look in this region
- Study of the QCD mixed phase hadroproduction and rare probes

COMPLEX NICA – CIVIL CONSTRUCTION

BM@N PROJECT

RESEARCH PROGRAMS @ BM@N (STAGE 1)

• Medium and Heavy-ion collisions up to Au+Au, $E_{kin} = 4.5 \text{ GeV/nucl}, \sqrt{s} \sim 3.5 \text{ A GeV}$: production mechanisms and modifications of hadron properties in dense nuclear matter – for strangeness (K⁰,K^{+/-}) and vector mesons decaying in hadron modes ($\phi \rightarrow K^+K^-$)

Hyperons production in AA collisions: A, E⁻

 Measure energy / rapidity distributions of beam fragments (protons, neutrons, light nuclei)

• Collective flows for $\pi/K/p$, hadron femtoscopy

 Study of pA reactions as reference for AA Interactions

Study of electromagnetic probes (γ, e⁺e⁻ pairs)

 \rightarrow Aim to measure momentum and identify charged particles with momentum p > ~200 MeV/c

BM@N SETUP

- BM@N advantage: large aperture magnet
- → fill aperture with coordinate detectors which sustain high multiplicities of particles
- → divide detectors for particle identification to "near to magnet" and "far from magnet" to measure particles with low as well as high momentum (p > 1-2 GeV/c)
- → fill distance between magnet and "far" detectors with intermediate coordinate detectors for reliable link

- Central tracker inside analyzing magnet to reconstruct AA interactions
- Outer tracker behind magnet to link central tracks to TOF mRPC detectors
- TOF system based on mRPC and T₀ detectors to identify hadrons and light nucleus
- ZDC calorimeter to measure centrality of AA collisions and form trigger
- Detectors to form T₀, L1 centrality trigger and beam monitors
- Recoil detector to measure event centrality
- **ECAL** for γ , e⁺e⁻

Magnetic field map

BM@N SETUP

SP-41M – analyzing magnet CM – center of magnet GEM – GEM Tracker, 12 planes **CPC** - Cathode Pad chambers DCH-1,2 – Drift Chambers Straw - Straw tubes (optional) mRPC-2: "far" TOF detector mRPC-1: "near" TOF detector ZDC – Zero Degree Calorimeter T_0T – detector to form TO and L1 trigger **BM** – Beam monitor Recoil detector - not shown ECAL - not shown ST – Silicon Tracker (optional)

OPTIMIZATION OF GEM TRACKER

Tracking based on 12 GEM planes placed at 30 - 360 cm from target

• Plane size is optimized for detection of $\phi \rightarrow K^+K^-$, e^+e^- , $\Lambda \rightarrow p\pi^-$, $\Xi^- \rightarrow \Lambda\pi^-$

- Strip pitch 0.4 mm in planes 1-4,
 0.8 mm in planes 5-12
- Strip inclination 0, +15° in odd,
 0, -15° in even planes

BMNRoot software framework

GEM DETECTOR OCCUPANCY

UrQMD: Au+Au @ E_{lab} = 4 GeV/nucl, b= 0-3 fm

GEM`s zones

GEM TRACKER: RECONSTRUCTION

Track momentum resolution in GEM tracker

Detection efficiency in dependence on particle momentum

Hyperon / kaon reconstruction

POSSIBLE DESIGN OF GEM DETECTORS

GEM detectors for BM@N produced by CERN workshop:

Inner planes with X-Y strips, 2 GEM detectors of 60x30cm² in 1 plane, anode strips divided into 6 zones, 400 µm pitch
 Outer planes with X-Y strips, 4 GEM detectors of 40x120cm² in 1 plane (placed as in simulation), anode strips divided into 4 zones, 800 µm pitch

Half of inner X-Y plane

→ minimum material in sensitive area

Structure of triple GEM detector

Triple GEM detector for JLAB tracker 40 x 50 cm

GEM & PROP CHAMBERS

Proton beam at Nuclotron in Feb 2014

triple GEM efficiency

MC SIMULATION AND T₀T DETECTOR SETUP

Au+Au 4 GeV/n, QGSM

Number of hit channels vs centrality

 T_0T Efficiency vs centrality

BC1, BC2, BC3 – beam counters BPM – beam profile monitor VC – veto counter T0 – modular Cherenkov detector MC – charged particle multiplicity counter

T₀ detector design

TEST BEAM MPD: TEST OF T₀ DETECTOR PROTOTYPE

Time resolution for 3.5 GeV deutron beam ~30 ps

8/25/2014

BM@N TOF SYSTEM BASED ON 2 MRPC WALLS

1st Team: MPD design \rightarrow "near" mRPC-1 **2nd team:** IHEP design \rightarrow "far" mRPC-2 **First aim** \rightarrow 2 mRPC setups (2 x 160 channels) for BM@N test beam in Feb 2015

"Near" mRPC-1 wall at z ~ 4-5 m from IP to identify π / K / p with p<2 GeV/c

"Far" mRPC-2 wall at z ~ 7-8 m from IP to identify $\pi / K / p$ with p>1 GeV/c and light nuclei

34

MRPC-1: MPD DESIGN / CHARACTERISTICS

NIM A, 735 (2014) 277-282

35

18

12 14 16

10 12 14 16

Rate, KHz/cm²

Rate, KHz/cm²

8/25/2014

MRPC-2: IHEP DESIGN / CHARACTERISTICS

Full spill. Chamber #2

e 23-27 °C

Full spill. Chamber #2

80 %

> ⁵⁰ ○ 35 °C 40 ▲ 45 °C

160

100

bs

'120

Efficiency, 0

• For region of low hit rate (~400 Hz/ cm^2): 10 gap RPC with "big" strip/pad ~50-120 cm^2

• For region of high hit rate (~4 KHz/ cm²): 12 gap "warm" RPC with "small" strip/pad ~15cm²

Time resolution ~65 ps, efficiency >94%. Total number of strips - 1536

ZDC CALORIMETER

Sci-Pb sandwich calorimeter with PMT readout, 104 modules

Energy deposited in ZDC vs collision impact parameter

37

TIME SCHEDULE FOR BM@N SETUP DEVELOPMENT IN 2014 - 2017

Year	2014	2015	2016	2017	2018	Cost, k\$
Infrastructure						
BMN exp.zone		*	*			190
Beam line				*		50
Magnet SP-41M						200
Detector BM@N (1 stage)						-
Central GEM tracker						1700
Outer tracker:						
DCH chambers						260
CPC chambers						400
Straw						
T0T detector						400
ZDC						560
Recoil detector						
ECAL						
ToF mRPC system:						
"near" mRPC						500
"far" mRPC						1080
DAQ system						1060
STS tracker						
					Total:	6400
🜟 critical point	upgrade	constru	iction	assembli	ng te	ests operation

SUMMARY

• NICA site has been prepared to start civil construction work

- MPD simulation is in progress to prepare well justified physics program
- R&D and detector prototyping is under way both for MPD and BM@N experiments
- BM@N configuration is being optimized

 Young people are getting involved in software and hardware tasks: BM@N activity can help to gain experience for larger-scale experiment MPD

A.Zinchenko PANIC 2014 8/25/2014

ACKNOWLEDGEMENTS

