26 Aug, 2014 PANIC14 @ Hamburg

High-resolution hadronic-atom x-ray spectroscopy with superconducting TES microcalorimeters

Shinji OKADA (RIKEN)

The HEATES collaboration

S. Okada¹, D.A. Bennett², C. Curceanu³, W.B. Doriese², J.W. Fowler², T. Hashimoto¹, R.S. Hayano⁴,
M. Iliescu³, S. Ishimoto⁵, K. Itahashi¹, M. Iwasaki¹, J. Marton⁶, G.C. O'Neil², H. Outa¹, M. Sato¹,
D.R. Schmidt², D.S. Swetz², H. Tatsuno^{2,5}, J.N. Ullom², E. Widmann⁶, S. Yamada⁷, J. Zmeskal⁶

RIKEN¹, NIST², INFN-LNF³, Univ. of Tokyo⁴, KEK⁵, Stefan Meyer Institut⁶, Tokyo Metropolitan Univ.⁷

Contents

- 1. Introduction hadronic atom
- 2. Detector Transition-Edge Sensor (TES)
- **3. Experiment** a proposed K-atom experiment at J-PARC
- 4. Test experiment study of in-beam performance of TES at PSI
- 5. Summary

1. Introduction

hadronic (kaonic) atom

Hadronic atom

A tool for studying strong interaction

Strong-interaction shift & width

Many measurements so far

shift & width as a function of atomic number Z

 π^{-} atoms K⁻ atoms p atoms Σ^{-} atoms Repair stores 10 (0.43) (m=2) Shift [eV -Shift (eV) Child (eV) (e)) n = 10102 10 (n=1)Width [eV (n=3)10 4 10 n=7 (n=4)10 10 \$ 10 10 n = 10

Atomic number Z

Strong Interaction Physics From Hadronic Atoms C.J. Batty, E. Friedman, A. Gal, Physics Reports 287 (1997) 385 - 445

Open problem on K-atom

Different scenarios for different exotic atoms

particle	real potl.	imaginary potl.	comments
π^{-}	repulsive in bulk	moderate	excellent data
	attractive on surface		well understood
K^{-}	attractive	moderate	good data
	deep or shallow?		open problems
\overline{p}	??	very absorptive	excellent data
			understood

Experimental approaches

Prediction

Kaonic Helium 2p level shift and width

precise measurement of shift & width - potential depth

Insufficient resolution

Kaonic helium 2p level shift

two orders of magnitude improved resolution compared with the conventional semiconductor detector

High-resolution detectors

pionic atom exp. : D. Gotta (Trento'06)

W.B. Doriese, TES Workshop @ ASC (Portland), Oct 8, 2012

→ small acceptance

WhyTES ?

The solid angle of a crystal spectrometer (PLB 416 (1998) 50) was converted to the equivalent effective area.

WhyTES ? (cont')

High collection efficiency Multi device (Array) Large absorber

Compact and portable limited beam time, then need to remove

X-ray microcalorimeter

a thermal detector measuring the energy of an incident x-ray photon as a temperature rise (= $E/C \sim 1 \text{ mK}$)

Absorber with larger "Z" (to stop the high energy x-rays)

e.g., Absorber : Bi (320 um × 300 um wide, ~ 3 um thick) Thermometer : thin bilayer film of Mo and Cu (several 10s nm thick)

TES = Transition Edge Sensor

using the sharp transition between normal and superconducting state to sense the temperature

NIST's TES array system for x-rays

W.B. Doriese, TES Workshop @ ASC (Portland), Oct 8, 2012

... a typical Silicon detector used in the previous K-atom exp.

NIST's TES for gamma-rays

for 100 - 400 keV

NIST's standard TES

- 1 pixel : 1.45 x 1.45 mm²
- 256 array : total ~ <u>5 cm²</u>
- 53 eV (FWHM) @ 97 keV

an order improved resolution

State-of-art high-purity germanium detectors

e.g., hard-X-ray spectroscopy

D. A. Bennett et al., Rev. Sci. Instrum. 83, 093113 (2012)

3. Experiment

a proposed K-atom experiment at J-PARC

J-PARC (Japan)

J-PARC @ Tokai

· 120 km from Tokyo

J-PARC : Japan Proton Accelerator Research Complex

J-PARC hadron beamline

Experimental setup

A simple simulation

Moreover ...

Summary of Kaonic atom study

Kaon mass

the higher orbit having almost no influence on the strong interaction

Rough yield estimation

		Acceptance (including x-ray attenuation)	Number of stopped kaon	Absolute x-ray yield / stopped K	Time	X-ray counts
prev. experiment (KEK-PS E570 2nd cycle)		0.126% / 7SDDs	~300/spill (2sec)	~8%	272 hours	1700 w/o cuts (including trigger condition ~40%)
TES J-PARC (30kW)	Не	0.024%	~300?/spill (2sec) duty ~45%	~8%	~4 days	130
	С	~0.01% self attenuation	~2000?/spill (2sec) duty ~45%	~17%	~1 weeks	2500

-> reasonable beam time

4. Test experiment

study of in-beam performance of TES at PSI

Feasibility test towards J-PARC expt.

- aim : studying in-beam performance of TES
 <u>the first measurement</u> of hadronic-atom x-rays with TES
- when? : October 2014
- where? : Paul Scherrer Institute (PSI), PiMI beamline

Experimental setup

Moreover ...

High-precision measurement of π -^{3,4}He 2p-1s x-rays

π-p, π-d : high accuracy data w/ crystal spectrometer
 -> but no high-precision data for π-He yet

		past measurements	
	x-ray energy	shift	width
π - 3He atom 2p-1s	10.64 [keV]	+32 ± 4 [eV]	28 ± 7 [eV]
π - 4He atom 2p-1s	10.77 [keV]	-75.7 ± 2.0 [eV]	45 ± 3 [eV]

G. Backenstoss et al., Nuclear Phys. A 232 (1974) 519.I. Schwanner et al., Nuclear Phys. A 412 (1984) 253.

aiming to measure π -He shift & width with one-order better accuracy than past one

► Target : gas helium-3 & 4 (room temperature, ~10 atom)

Yield estimation : ~ 5000 events for 3-days data acquisition

5. Summary

Summary

- Next-generation hadronic-atom experiment with TES
- NIST's TES : large area ~20 mm², high resolution ~3 eV FWHM @ 6 keV
- Kaonic atom at J-PARC (in future years)
 - ▶ a potential to resolve a long-standing deep-shallow problem
 - providing new accurate charged kaon mass value
- Pionic atom at PSI (soon!)
 - ▶ feasibility test towards K-atom expt. at J-PARC
 - the first hadronic-atom expt. with TES (aiming high-accuracy π -He data)
- Future w/ k/M-pixel TES : other hadronic atom (Σ -, Ξ -) x-ray spectroscopies

Is 240 pixel ($\sim 23 \text{ mm}^2$) enough?

estimated K-⁴He Ka yield w/ realistic setup ~ 30 events / day

	K-4He Kα events	Energy resolution in FWHM	Stat. accuracy of ene. determining (6 keV)
KEK-E570 with SDD	1500 events ONE order lower 120 events	190 eV TWO orders higher	2 eV = 190 / 2.35 / sqrt(1500) ONE order better ~ 0.1 eV
	(~ 4-day beam)	Z~3Ev	= 2 ~ 3 / 2.35 / sqrt(120)

Count rate with TES

-> acceptable even 10 times higher count rate

Line calib. experiment @ NIST

26 Aug. - 6 Sept., 2013

electron gun

Line calib. experiment @ NIST

well-known lines (ΔE <~ 0.1 eV)

NIST's 240 pixelTES array

