Polarization Observables T and Fin Single π^0 and η -Photoproduction off Quasi-Free Nucleons

Thomas Strub, A2 Collaboration

University of Basel

28th August 2014, PANIC 2014

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

Motivation

- experimental Setup
- **8** Polarization Observables
- 4 Analysis Methods
- Selected Results

Motivation

Problems on experimental side

- Nucleons' excitation spectrum is a complicated overlap of many short lived, broad resonances
- Cannot be understood from differential cross sections alone

Problems on theory side

- QM predicts more states than observed (missing resonances)
- Perturbative QCD cannot be applied in this energy region
- Lattice gauge QCD cannot (yet) reproduce all desired properties

Motivation

Solution

- Effective quark models
- Experiment delivers observables to fix the models parameters via PWA

Polarization observables from meson photoproduction

- Probing spin degrees of freedom
- Unique PWA solution
 - \implies Need 8 (of 16) carefully chosen observables for complete experiment
 - ▶ Include angular momentum $L \leq$ 3, i.e., S, P, D, F-wave
 - \Longrightarrow Need full angular coverage, high precision measurements

Proton and neutron channel

- Probe isospin degree of freedom
- ► Isospin decomposition into A^{V3} , A^{IV} , A^{IS} for π photoproduction $A(\gamma p \to \pi^+ n) = -\sqrt{\frac{1}{3}}A^{V3} + \sqrt{\frac{2}{3}}(A^{IV} - A^{IS}) \quad A(\gamma p \to \pi^0 p) = +\sqrt{\frac{2}{3}}A^{V3} + \sqrt{\frac{1}{3}}(A^{IV} - A^{IS})$ $A(\gamma n \to \pi^0 n) = +\sqrt{\frac{1}{3}}A^{V3} - \sqrt{\frac{2}{3}}(A^{IV} + A^{IS}) \quad A(\gamma n \to \pi^- p) = +\sqrt{\frac{2}{3}}A^{V3} + \sqrt{\frac{1}{3}}(A^{IV} + A^{IS})$ \implies At least one measurement off the *neutron* needed.

Outline Motivation Experimental Setup Polarization Observables Analysis Methods Selected Results Conclusion

Motivation

Special case η photoproduction

- Isospin $I = I_z = 0$.
- No isospin changing current $(A^{V3} = 0)$

$$A(\gamma p \rightarrow \eta p) = A^{IS} + A^{IV}$$

 $A(\gamma n \rightarrow \eta n) = A^{IS} - A^{IV}$

$$\implies$$
 only $N^*(I = \frac{1}{2})$ resonances contribute

 Recent results show a narrow structure around 1670 MeV

Photoproduction off the neutron

- Neutron bound in nucleus
 quasi free neutron
- Correct treatment of Fermi motion
- Comparison of free and quasi free proton data (can differ due to FSI)

Experimental Setup

Experimental Setup

MAinzer MIcrotron

High quality electron beam

- Energy up to 1.5 GeV
- Intensity up to 100 μA
- Polarization $\approx 80\%$

Bremsstrahlung photons

- $1/E_{\gamma}$ distribution
- Photon polarization: Olsen maximum function

Crystal Ball/TAPS @ MAMI

СВ

- PID
- MPWC
- Nal crystals

TAPS

- BaF2/PWO crystals
- Veto wall
- \implies Almost 4π acceptance

Polarization Observables T and F

Thomas Strub, A2 Collaboration

Outline Motivation Experimental Setup Polarization Observables Analysis Methods Selected Results Conclusion

Polarization Observables

Polarization Observables

General Formula

General decomposition of $d\sigma$ into 16 polarization observables reads

$$\begin{split} d\sigma^{\mathrm{B,T,R}}(\vec{P}^{\gamma},\vec{P}^{T},\vec{P}^{R}) &= \frac{1}{2} \left\{ d\sigma_{0} \left[1 - P_{L}^{\gamma} P_{y}^{\gamma} P_{y}^{R} \cos(2\phi_{\gamma}) \right] \\ &+ \hat{\Sigma} \left[-P_{L}^{\gamma} \cos(2\phi_{\gamma}) + P_{y}^{\gamma} P_{y}^{R} \right] \\ &+ \hat{T} \left[P_{y}^{\gamma} - P_{L}^{\gamma} P_{y}^{R} \cos(2\phi_{\gamma}) \right] \\ &+ \hat{P} \left[P_{y}^{\gamma} - P_{L}^{\gamma} P_{y}^{T} \cos(2\phi_{\gamma}) \right] \\ &+ \hat{E} \left[-P_{c}^{\gamma} P_{z}^{T} + P_{L}^{\gamma} P_{x}^{T} P_{y}^{R} \sin(2\phi_{\gamma}) \right] \\ &+ \hat{G} \left[P_{L}^{\gamma} P_{z}^{T} \sin(2\phi_{\gamma}) + P_{c}^{\gamma} P_{x}^{T} P_{y}^{R} \right] \\ &+ \hat{F} \left[P_{c}^{\gamma} P_{x}^{T} + P_{L}^{\gamma} P_{z}^{T} P_{y}^{R} \sin(2\phi_{\gamma}) \right] \\ &+ \hat{H} \left[P_{L}^{\gamma} P_{x}^{T} \sin(2\phi_{\gamma}) - P_{c}^{\gamma} P_{z}^{T} P_{y}^{R} \right] \\ &+ \hat{C}_{z'} \left[P_{c}^{\gamma} P_{x'}^{T} - P_{L}^{\gamma} P_{y}^{T} P_{x}^{R} \sin(2\phi_{\gamma}) \right] \\ &+ \hat{O}_{z'} \left[P_{L}^{\gamma} P_{x'}^{R} \sin(2\phi_{\gamma}) - P_{c}^{\gamma} P_{z}^{T} P_{z}^{R} \right] \\ &+ \hat{O}_{z'} \left[P_{L}^{\gamma} P_{x}^{R} \sin(2\phi_{\gamma}) - P_{c}^{\gamma} P_{x}^{T} P_{z}^{R} \right] \\ &+ \hat{D}_{z'} \left[P_{z}^{\gamma} P_{x'}^{R} \sin(2\phi_{\gamma}) - P_{c}^{\gamma} P_{x}^{T} P_{z}^{R} \right] \\ &+ \hat{L}_{x'} \left[P_{z}^{T} P_{x'}^{R} \sin(2\phi_{\gamma}) - P_{c}^{\gamma} P_{x}^{T} P_{z}^{R} \right] \\ &+ \hat{L}_{x'} \left[P_{z}^{T} P_{x'}^{R} \sin(2\phi_{\gamma}) - P_{c}^{\gamma} P_{x}^{T} P_{z}^{R} \right] \\ &+ \hat{L}_{x'} \left[P_{z}^{T} P_{x'}^{R} \exp(2\phi_{\gamma}) \right] \\ &+ \hat{L}_{x'} \left[P_{z}^{T} P_{x'}^{R} - P_{L}^{\gamma} P_{x}^{T} P_{x'}^{R} \cos(2\phi_{\gamma}) \right] \\ &+ \hat{T}_{x'} \left[P_{x}^{T} P_{z'}^{R} - P_{L}^{\gamma} P_{x}^{T} P_{x'}^{R} \cos(2\phi_{\gamma}) \right] \\ &+ \hat{T}_{z'} \left[P_{x'}^{T} P_{z'}^{R} - P_{L}^{\gamma} P_{x'}^{T} P_{x'}^{R} \cos(2\phi_{\gamma}) \right] \end{aligned}$$

Definition of T and F

- ► Target asymmetry T \implies Transversally polarized target $\vec{P}^T = P_x^T \neq 0$
- ▶ Double polarization observable F
 ⇒ Transversally polarized target P^T = P^T_x ≠ 0
 Circularly polarized photon beam P⁷ = P^T_c ≠ 0
- ► For $\vec{P}^R = 0$ (unpolarized recoil), $\vec{P}^{\gamma} = P_c^{\gamma}$ (circular photon polarization) and $\vec{P}^T = P_x^T$ (transverse target polarization) the general decomposition reduces to

$$d\sigma(\vec{P}^{\gamma}, \vec{P}^{T}, 0) = \frac{1}{2} d\sigma_{0} \left\{ 1 + TP_{y}^{T} + FP_{c}^{\gamma} P_{x}^{T} \right\}$$
$$= \frac{1}{2} d\sigma_{0} \left\{ 1 + T|P^{T}|\cos(\phi') + F|P^{\gamma}||P^{T}|\cos(\phi) \right\}.$$

▶ Observables T and F manifest themselves by a cosine-φ^(')-modulated unpolarized cross-section

Polarization Observables

Definition of T and F (experimental approach)

T and F can be rewritten as

$$T\cos(\phi') = \frac{1}{P^{T}P^{\gamma}} \frac{d\sigma^{\uparrow}(\phi') - d\sigma^{\downarrow}(\phi')}{d\sigma^{\uparrow}(\phi') + d\sigma^{\downarrow}(\phi')},$$

where (\uparrow,\downarrow) denotes the target polarization state,

$$F\cos(\phi) = \frac{1}{P^{T}P^{\gamma}} \frac{d\sigma^{-}(\phi) - d\sigma^{+}(\phi)}{d\sigma^{-}(\phi) + d\sigma^{+}(\phi)},$$

where (+, -) denotes the photon helicity state.

Here,
$$F = F(E, \theta)$$
, $T = T(E, \theta)$, $P^{T} = P^{T}(t)$
and $P^{\gamma} = P^{\gamma}(E^{\gamma}, P_{B}(t))$

- Symmetric contributions cancel in the numerator
- Denominator equals unpolarized $d\sigma$

- ϕ = Angle between target polarization vector and production plane
- $\phi' = \text{Angle between target}$ polarization vector and normal to production plane

Methods to extract T and F

Polarized target: D-butanol (C_4D_9OD)

- Only deuterons are polarized
- Carbon/oxygen contribution vanish in numerator

Two methods can be used:

▶ 1. Normalize with deuterium target

$$A\cos(\phi) = \frac{1}{P_T P_\gamma} \frac{d\sigma_{DB}^-(\phi) - d\sigma_{DB}^+(\phi)}{d\sigma_D^-(\phi) + d\sigma_D^+(\phi)}$$

 \implies Needs flux and efficiency correction of count rates.

2. Normalize with D-butanol target

$$A\cos(\phi) = \frac{1}{P_{\tau}P_{\gamma}} \frac{dN_{DB}^{-}(\phi) - dN_{DB}^{+}(\phi)}{dN_{DB}^{-}(\phi) + dN_{DB}^{+}(\phi)} \cdot d\theta$$

 \implies No need for flux and efficiency correction, but dilution factor d, i.e.,

$$d = 1 + \frac{d\sigma_C^0}{d\sigma_{DB}^0}$$

Analysis Methods

Analysis Methods

Event selection

- Event selection
 - Full exclusive on proton (neutron as spectator)
 - $\gamma + d \longrightarrow \pi^0 + p(n) \longrightarrow 2\gamma + p(n)$ 2 neutral, 1 charged
 - $\gamma + d \longrightarrow \eta + p(n) \longrightarrow 2\gamma + p(n)$ 2 neutral, 1 charged
 - $\gamma + d \longrightarrow \eta + p(n) \longrightarrow 3\pi^0 + p(n) \longrightarrow 6\gamma + p(n)$ 6 neutral, 1 charged
 - ► Full exclusive on neutron (proton as spectator) $\gamma + d \longrightarrow \pi^{0} + n(p) \longrightarrow 2\gamma + n(p)$ 3 neutral, 0 charged $\gamma + d \longrightarrow \eta + n(p) \longrightarrow 3\pi^{0} + p(n) \longrightarrow 6\gamma + n(p)$ 7 neutral, 0 charged $\gamma + d \longrightarrow \eta + n(p) \longrightarrow 3\pi^{0} + p(n) \longrightarrow 6\gamma + n(p)$ 7 neutral, 0 charged
- Determination of the neutron candidate by χ^2 -test.
- Invariant mass cut on all 3 π^0 from $\eta \to 6\gamma$ decay.

Applied Cuts

All cuts are determined from LD₂ target for all θ and energy bins.

Coplanarity cut

$$\Delta \phi = 180^\circ - |\phi_{ extsf{meson}} - \phi_{ extsf{recoil}}|$$

Invariant mass cut

$$\Delta m_{
m meson} = |P^{\mu}_{
m meson}| - m^{
m theo.}_{
m meson}$$

Missing mass cut

$$\Delta MM = |P^{\mu}_{\gamma} + P^{\mu}_{ ext{nucleon}} - P^{\mu}_{ ext{meson}}| - m^{ ext{theo}}_{ ext{nucleon}}$$

Thomas Strub, A2 Collaboration

Reconstruction of Kinematics

Transfer kinematics into CM frame

- ▶ Fermi momentum from deuterium (carbon/oxygen) target ⇒ Initial state not determined
- ▶ Reconstruction of nucleons Fermi momentum from final state, i.e., solve

$${\cal P}^{\mu}_{\gamma}+{\cal P}^{\mu}_{
m nucleon}={\cal P}^{\mu}_{
m meson}+{\cal P}^{\mu}_{
m recoil}$$

for P^{μ}_{nucleon} .

> Have enough information to reconstruct Fermi momentum of nucleon.

Determination of Dilution Factor

- Determination of the dilution factor from missing mass spectra
- Carbon + x Deuterium = Sum \approx D-butanol

 \blacktriangleright Dilution factor $d=1+\int_{\textit{MMcut}}\Delta\textit{MM}_{\textit{carbon}}\ /\ \int_{\textit{MMcut}}\Delta\textit{MM}_{\textit{deuterium}}$

Selected Results

Selected Results (preliminary)

Polarization Observ

n Observables 🛛 Ana

s Analysis Methods Selecte

Selected Results Conclusion

T and F for Single π^0 Photoproduction (preliminary)

Experimental Set

Polarization Ob

n Observables Analysis

T and F for η Photoproduction (preliminary)

Conclusion

Conclusion

- Preliminary results for T and F for single π⁰- and η photoproduction off quasi free nucleons
- Very good agreement with free proton data
- Models fail for ...
 - ... higher energies
 - ... the neutron channel
 - \ldots the η channel

Outlook

- Use full statistic (here: $\pi^0 \approx 70\%$, $\eta \approx 50\%$)
- Observables for double meson photoproduction
- Final results will contribute to the 'complete experiment'
 Possible impact on models

Thank you for your attention.

