

Particles and Nuclei International Conference 24 - 29 August 2014

Evaluation of the MPD/NICA detector capabilities for studies of hyperon production in HIC

V.Vasendina, A.Zinchenko *for the MPD collaboration* (VBLHEP, JINR, Dubna, Russia)

> NICA program at JINR

> MPD detector for studying HIC: design & performance (Stage 1)

- ≻ TPC
- > TOF
- > ECAL

Particle Identification

> Study of hyperon production with MPD

> MPD capability for reconstruction of Λ , Ξ , Ω

- Stage 2: ITS & EndCap tracker
- Conclusions and outlook

Complex NICA

NICA parameters & research programs

NICA parameters:

- Beams: p,d(h)..¹⁹⁷Au⁷⁹⁺ Collision energy: 4-11A GeV (nuclei) Luminosity: 10²⁷ cm⁻²s⁻¹ (Au), 10³² (p) 2 Interaction points: MPD and SPD Fixed target: 1-6A GeV beams (BM@N)
- New flagship project at JINR (Dubna)
- Based on the technological development of the Nuclotron facility
- Optimal usage of the existing infrastructure
- Modern facility incorporating new technological concepts

QCD matter under extreme conditions

- Study of QCD phase diagram
 - deconfinement phase transition
 - mixed phase, Critical End Point
- In-medium properties, EoS
 - chiral symmetry restoration Spin physics
- Nucleon spin structure
- Hadroproduction with polarized beams <u>Applied research</u>
- Cryogenic, material science, transmutation
- > Medicine

Accelerator physics

- Superconducting magnets for high intensity ion beams
- Electron cooling for relativistic heavy ions

Multi-Purpose Detector (MPD) @ NICA

- Magnet: 0.5 T superconductor
- Tracking: TPC, ECT, ITS
- ParticleID: TOF, ECAL, TPC
- ➤ T₀, Triggering: FFD
- Centrality, Event plane: ZDC
- Stage 1: TPC, Barrel TOF & ECAL, ZDC, FFD
- Stage 2: ITS + EndCaps (tracker, TOF, ECAL)

Requirements to the apparatus:

- > Hermeticity, homogenous acceptance : 2π in azimuthal angle
- > Highly efficient 3-D track reconstruction ($|\eta|<2$), high resolution vertexing
- > Powerful PID: π/K up to 1.5 GeV/c, K/p up to 3 GeV/c, ECAL for γ , e
- Careful event characterization: impact parameter & event plane reconstruction
- Minimal dead time, event rate capability up to ~ 6 kHz

8/28/2014

Time Projection Chamber (TPC)

Dimensions: 4 m x 3 m *Drift Length:* 170 cm *Gas:* 90% Argon + 10% Methane *Readout:* 2x12 sectors (MWPC or GEM)

Composite materials – transparent detector!

8/28/2014

PANIC 2014

TPC - MPD tracking system

- Low material budget
- > Rate capability up to 6 kHz
- > Spatial resolution: $\sigma_{r_0} \sim 300 \text{ mm}, \sigma_z \sim 2 \text{ mm}$
- Momentum resolution: \Deltap/p < 3% (0.2<p<1GeV/c)</p>
- ➤ dE/dx resolution: < 8%</p>

V.Vasendina, A.Zinchenko

TPC- technical project approved, fabrication stage

FEC-64 prototype (ALTERA FPGA, ALTRO, PASA chips)

Prototype1: UV laser tracks - reconstructed

Cylinder C3 manufactured in Dec. 2013

8/28/2014

Time Of Flight (TOF) (JINR+Hefei, Beijing(China)

PID : e/h – 0.1..0.35 GeV/c p/K – 0.1..1.5 GeV/c K/p – 0.1..2.5 GeV/c

Resistive Plate Chambers

Basic requirements:

> Coverage: > 30 m², $|\eta|$ <3 (barrel+endcap) > σ ~ 80 ps (100 ps overall)

Dimensions:

barrel: 5 m (length), 2.5 m (diameter) *endcap:* 2 x 2.5 m (diameter) disks *Gas:* 90% $C_2H_2F_4 + 5\% iC_4H_{10} + 5\% SF_6$ *Segmentation (barrel):* 12 sectors x 55 modules (62 x 7 cm²) *module:* 10-gap RPC

Electromagnetic Calorimeter (EC

VBLHEP & DLNP (JINR) + ISM (Kharkiv)

- ECAL aimed at detecting electrons and gammas and has to fulfill:
- High granularity and hermeticity
- Energy, spatial (and also timing) resolutions
- Manufacturing technology & cost

"Shashlyk" sampling calorimeter:

Pb (0.35 mm) + Scint. (1.5 mm) $4x4 \text{ cm}^2$, L ~35 cm (~ 14 X₀) read-out: WLS fibers + MAPD

MPD performance: tracking

Fig.1: Track reconstruction efficiency. High efficiency: down to 100 MeV/c

Fig.2: Momentum resolution. Δp/p < 2% @ p_T < 1.5 GeV/c

Fig.3: Primary vertex resolution. $\sigma_x \& \sigma_z < 0.15 \text{ mm in central collisions}$ at track multiplicity in TPC >500

MPD Particle Identification (PID)

Mass square calculated using the measurements of momentum (p), time-of-flight (T) and trajectory length (L):

$$m^{2} = p^{2} \left(\frac{c^{2} T^{2}}{L^{2}} - 1 \right)$$

Requirements :

 Hadron (π, K, p)
 identification up to 3 GeV/c, midrapidity nuclei PID
 Electron PID with hadron suppression up to 10⁵
 Secondary vertex reconstruction – hyperons & hypernuclei @ midrapidity

Fig.1: Energy loss (dE/dx) in the TPC gas **Fig.2:** Combined dE/dx and TOF

Fig.3: Particle selection within 'dE/dx vs m^{2} ' space in momentum bins

Fig.4: Energy deposit in ECAL (γ and e^{\pm})

Physics motivation

- The study of hyperons helps to understand strong interactions and QGP.
- Hyperons (especially A) are produced in relatively large quantities and have very attractive experimental features (resonance structure and simple decay mode). They can serve as detector performance monitoring tools.

Messengers from the dense fireball: UrQMD

- Generator: UrQMD, Au+Au @ 9A GeV central (0-3 fm), 10k - 500k events (30 sec. - 28 min. of data taking time at NICA)
- Detectors: start version of MPD with up-to-date TPC & TOF

Analysis

➤ Track acceptance criterion: $|\eta| < 1.3$, $N_{hits} \ge 10$ ➤ Particle identification in TPC & TOF

Analysis Method: Secondary Vertex Finding Technique

 $\Omega^{-} \rightarrow \Lambda + K^{-} \rightarrow p + \pi^{-} + K^{-}$

Event topology:

- PV primary vertex
- $> V_0$ vertex of hyperon decay
- dca distance of the closest approach
- path decay length

Invariant mass at max. significance: $\Lambda \rightarrow p + \pi^- \& \Lambda_{bar} \rightarrow p^- + \pi^+$

Λ multiplicity

Figure: Multiplicity of reconstructed Λ at \sqrt{s} = 5A and 9A GeV from UrQMD generator.

The resulting efficiency will allow studying some multiparticle phenomena with hyperons (for example, $\Lambda - \Lambda$ correlations).

Invariant mass at max. significance: $\Xi^- \rightarrow \Lambda + \pi^- \& \Xi^+_{bar} \rightarrow \Lambda_{bar} + \pi^+$

Invariant mass at max. significance: $\Omega^- \rightarrow \Lambda + K^- \& \Omega^+_{bar} \rightarrow \Lambda_{bar} + K^+$

Expected yields of the hyperons for MPD

10 weeks of running time, 300 central events per second

Particles / Decay	Yields
$\Lambda \rightarrow p + \pi^{-}$	5.8*10 ⁹
$\Lambda_{bar} ightarrow p^- + \pi^+$	7.3*10 ⁷
$ar{\Xi}^{-} ightarrow m{\Lambda} + m{\pi}^{-}$	2.9*10 ⁷
$ar{=}^+{}_{bar} { o} oldsymbol{\Lambda}_{bar}$ + $oldsymbol{\pi}^+$	1.6*10 ⁶
$\Omega^{-} \rightarrow \Lambda + K^{-}$	1.4*10 ⁶
$\Omega^+_{bar} ightarrow \Lambda_{bar} + K^+$	2.5*10 ⁵

All efficiencies are included.

Stage 2: ITS & EndCap

Inner Tracker System (ITS)

- 4 cylindrical & disk layers
 300 mm double-sided silicon microstrip detectors, pitch 100 mm
 Thickness / layer ~ 0.8% X₀
- > Barrel: R = 6-25 cm, coverage $|\eta|$ <2.5
- 806 sensors of 62x62 mm²
- > **Resolution:** $\sigma_z = 120 \text{ mm}, \sigma_{rf} = 23 \text{ mm}$

EndCap Tracker (straw ECT)

- ➤ 2x60 straw layers
- ~ 72000 straw tubes 4 mm x 60 cm
- ➤ Coverage: 1.3<|η|<2.2</p>

MPD Tracking performance with ITS & ECT

MPD tracking efficiency above 85% within |η|<2.0 && pt>0.15 GeV/c
 Δp/p < 3% at midrapidity

MPD Tracking capability with ITS & ECT

Conclusions and Outlook

- MPD start version will provide a good opportunity for a study of the strangeness production at NICA (mass resolution 2-3 MeV/c² and high enough yields).
- More realistic detector response simulation is in progress.
- > Effects of increased detector acceptance (higher η -coverage, detector upgrade) are under evaluation.

Complex NICA – civil construction

Thank You for attention!

Zero Degree Calorimeter (INR, Troisk+VBLHEP, JINR)

.. to measure the energy deposited by spectators. ZDC provides:

> Off-line event centrality determination \rightarrow transverse dimensions motivated by the spectator spot size

Measure of the assymetry in athimuthal distribution (event plane)

Pb(16mm)+Scint.(4mm) sandwich
 45 layers of lead-scintillator (4λ)

- Read-out: WLS fibers + MAPD
- similar to ZDCs for NA61 and CBM

Centrality is defined by combined TPC track multiplicity and ZDC energy deposit Event plane resolution up to 0.9

V.Vasendina, A.Zinchenko