

Measurement of the Properties of the New (Higgs) Boson

Shivali Malhotra University of Delhi, India

On behalf of the CMS Collaboration

20th Particles & Nuclei International Conference

25-29 August 2014 Hamburg, Germany

<u>Outline</u>

- Combination Inputs
- Mass Measurement
- Signal Strength
- Higgs Couplings
- Other Models
- Summary

CMS Integrated Luminosity, pp, 2012, $\sqrt{s}=$ 8 TeV

25th Aug. 2014, PANIC - GERMANY

Combination Inputs

The following Higgs signatures have been explored at CMS:

Decay tag	incl.(ggH)	VBF tag	VH tag	ttH tag
H→ZZ	~	~		
Н→үү	~	~	~	~
H→WW	~	~	~	~
Η→ττ	~	~	~	~
H→bb		1	~	~
H→Zγ	1	<i>✓</i>		
Η→μμ	1	<i>✓</i>		
H→inv.		<i>√</i>	<i>√</i>	

✓ Used in the NEW combination CMS-PAS-HIG-14-009

Difference from individual Higgs Analysis

- 1. Change in the value of m_H for which the significance of $H \rightarrow ZZ \& H \rightarrow WW$ analysis were done
- 2. Inclusion of channels from $t\overline{t}H$ analysis for various decay modes
- 3. Treating H \rightarrow WW as part of the signal rather than background in H $\rightarrow \tau \tau$ analysis

<u>Mass of Higgs Boson</u>

Measured the best-fit value of the **mass** of the new boson and its uncertainty with the $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ \rightarrow 41$ channels

Difference in Mass Measurement

To check the compatibility of mass measurement of two analysis with each other

Excess for m_H = 125 \text{ GeV}

After measuring the mass at 125 GeV and fixing m_H, observed and expected significances for different decay modes were evaluated

Channel	Observed	Expected
Chaimer	σ	σ
H →ZZ	6.5	6.3
Η→γγ	5.6	5.3
$H \rightarrow WW (t)$	4.7	5.4
H →WW	4.3	5.4
$H \rightarrow \tau \tau$ (t)	3.8	3.9
$H \rightarrow \tau \tau$	3.9	3.9
$H \rightarrow bb$ (t)	2.0	2.3
H →bb	2.1	2.3

(t) implies $t\bar{t}H$ production mode is included

25th Aug. 2014, PANIC - GERMANY

5

Signal Strength

The 68% CL region for the signal strength divided into different

Signal Strength

7

Best-fit results for the relative strengths of the couplings to the vector boson and fermions corresponding to different decay modes

25th Aug. 2014, PANIC - GERMANY

The branching fractions cancel out in each channel and the results of the different channels can be combined **Combined best fit**

 $\mu_{VBF,VH}/\mu_{ggH,ttH}$: 1.25 $^{+0.63}_{-0.45}$ (1.00 $^{+0.49}_{-0.35}$)

Production Modes

Independent signal strengths corresponding to the four main production processes

Coupling to Fermions & Bosons

Map vectorial and fermionic couplings into two scale factors, κ_V and κ_f

2D scan for individual channels and overall combination Yellow Diamond shows the SM point (1,1)

Two quadrants

One quadrant

Custodial Symmetry

 κ_W and κ_Z are used to denote the SM Higgs couplings to W and Z bosons and we check their ratio for any violation of custodial symmetry

25th Aug. 2014, PANIC - GERMANY

New Physics Model

Parameters κ_{γ} and κ_{g} were scanned to get best-fit value at (1.14, 0.88) having (1, 1) within 95% CL. New particles can contribute to the total width Allowed total width to scale as 1/(1-BR_{BSM})

Asymmetry of Coupling to Fermions

1D scans wrt coupling modifier

Up-type vs Down-type

Leptons vs Quarks

Coupling vs Particle Mass

Test of generic five-parameter model, assuming SM structure for loops

 κ_t denotes the scale factor for couplings of Up-type quarks; κ_b denotes the scale factor for couplings of Down-type quarks; and κ_T denotes the scale factor for all the charged leptons

<u>Summary</u>

- Very precise Higgs mass measurement has been done with the current available dataset
- Compatibility tests show no significant deviation from SM expectation
- Results are compatible with the SM Higgs boson
- Limited Statistics: Run 2 will shed some more light with more compatibility tests on their way

Additional Information

25th Aug. 2014, PANIC - GERMANY

Combination Technique

I. <u>To find *p*-values & Significance</u>

- To quantify the presence of an excess of events over what is expected for the background, we use the test statistics *q*, where the likelihood appearing in the numerator is for the background only hypothesis : $I(abs|b\hat{A})$

$$q_0 = -2\ln\frac{L(obs \mid b, \theta_0)}{L(obs \mid \hat{\mu}.s + b, \hat{\theta})}$$

- where, s : signal expected under SM Higgs hypothesis
 - μ : signal strength modifier
 - b:backgrounds
 - q : nuisance parameters describing systematics uncertainties
- The value θ_0 maximises the likelihood in the numerator under the background only hypothesis, while μ and θ define the point at which the likelihood reaches its global maximum.
- Local *p*-value is defined as the probability under the background-only hypothesis, to obtain a value q_0 at least as large as that observed in the data, q_0^{data} : $p_0 = P(q_0 \ge q_0^{data} \mid b)$
- The local significance z of a signal-like excess is then computed using one-sided Gaussian tail: $t^{+\infty} = 1$

$$p_0 = \int_{z}^{+\infty} \frac{1}{\sqrt{2\pi}} \exp(-x^2/2) dx$$

Combination Technique

II. To extract signal model parameter

- Signal model parameters a are evaluated from a scan of the profile likelihood ratio q(a).

$$q(a) = -2\ln\frac{L(obs \mid s(a) + b, \hat{\theta}_a)}{L(obs \mid s(\hat{a}) + b, \hat{\theta})}$$

- The parameters \hat{a} and that maximise the likelihood, $L(obs | s(\hat{a}) + b, \theta) = L_{max}$ are called the best-fit set.
- For 68% CL parameter of interest *a* are evaluated from $q(a_i) = 1$ and $q(a_i, a_j) = 2.30$ & for 95% CL as $q(a_i) = 3.84$ and $q(a_i, a_j) = 6.99$ for 1-D and 2-D respectively, with all other unconstrained model parameter treated in the same way as the nuisance parameters.
- Overall statistical methodology for combination was developed by the ATLAS & CMS Collaborations in context of **LHC Higgs Combination Group**.

Signal Strength

