

Measurements of WV Boson Production and Limits on Charged aTGCs at CMS

Osipenkov, Ilya (Texas A&M University) On behalf of the CMS Collaboration

Particles and Nuclei International Conference 2014

PANIC2014: 08/28/2014

WV Interactions @ CMS

Presented by: Osipenkov, Ilya

Motivation

Why Measure Charged Vector Boson Gauge Couplings ?

- Verify the consistency of SM by performing the Vector Boson coupling measurements in several channels
- Understand backgrounds for other measurements (e.g. Higgs)
- Search for New Physics

★ This presentation will focus on analyses of WZ → $l\nu ll$, WW → $l\nu l\nu$ and WV → $l\nu jj$ final states

$WZ \rightarrow l\nu ll$ Analysis

★ Reconstruct WZ $\rightarrow l\nu ll$ final states with $l=\mu$, e

- **Z** reconstruction:
 - p_T¹¹>20 GeV, p_T¹²>10 GeV
 - 71 < m_{l+1-} < 111GeV (& closest to the Z mass)
- **W** reconstruction:
 - p_T¹>20 GeV, MET>30 GeV
- > Backgrounds:
 - Non Peaking no Z boson (e.g. tt)
 - Prompt Lepton real Z and an isolated lepton(-like) object (e.g. ZZ, Zγ).
 - Fake Lepton real Z plus a jet faking a lepton
- Estimate the Fake Lepton background from sideband regions in the data

* High Purity Signal Extracted

sample	eee	eeµ	μµe	μμμ
Z+jets	9.8 ± 4.4	16.9 ± 6.0	14.5 ± 5.4	13.8 ± 4.5
top	1.4 ± 0.4	2.7 ± 0.3	6.2 ± 0.7	9.1 ± 1.0
ZŻ	2.4 ± 0.1	3.1 ± 0.1	3.9 ± 0.1	5.8 ± 0.1
$Z\gamma$	2.4 ± 0.9	0.4 ± 0.4	3.8 ± 1.2	0
WV	0.1 ± 0.1	0.1 ± 0.1	0.2 ± 0.1	2.2 ± 0.7
VVV	6.1 ± 0.3	7.9 ± 0.3	10.4 ± 0.4	13.4 ± 0.4
WZ	193.9 ± 1.4	245.8 ± 1.6	315.9 ± 1.9	428.0 ± 2.2
total MC	216.0 ± 4.7	277.0 ± 6.3	354.9 ± 6.0	472.3 ± 5.2
data-driven	14.8 ± 1.4	27.1 ± 2.9	47.9 ± 3.4	59.0 ± 4.6
data	235	288	400	557

WZ → *lvll* Cross Section Measurement

- Assess the systematic uncertainties, with the largest contributions originating from MET energy & resolution and data-driven background estimates.
 - Subtract the expected background events from the total and compute σ

- * $\sigma=20.8 \pm 1.3(\text{stat.}) \pm 1.1 \text{ (syst.)} \pm 0.5(\text{lumi.}) \text{ pb @7TeV}$ * $\sigma=24.6 \pm 0.8(\text{stat.}) \pm 1.1 \text{ (syst.)} \pm 1.1(\text{lumi.}) \text{ pb @8TeV}$
- ➤ Consistent with NLO predictions: 17.8^{+0.7}_{-0.5} & 21.9^{+1.2}_{-0.88}
- The W⁺Z production cross section is expected to be a factor of 1.72 (1.78@7TeV) larger than σ_{W-Z}

PANIC2014: 08/28/2014

WW $\rightarrow l\nu l\nu$ Analysis

- Identify two central (|η_µ|<2.4, |η_e|<2.5), oppositely charged leptons with p_T>20GeV
- Background Reduction:
 - Top remove events with jet p_T>30GeV and apply top-quarktagging techniques.
 - Drell Yan require MET>45 GeV (>20 GeV in the μe channel). Reduce further by applying jet separation, Z mass window and dilepton p_T cuts.
 - Diboson remove events with third lepton p_T>10GeV
 - Wγ reject photon-conversion electrons
- Top, Drell Yan, W+Jets backgrounds and Wγ scale are determined from data control regions
- Systematics dominated by jet veto efficiency and uncertainty in background estimation
 - * $\sigma=52.4 \pm 2.0 \text{ (stat.)} \pm 4.5 \text{ (syst.)} \pm 1.2 \text{ (lumi.) pb } @7\text{TeV}$ * $\sigma=69.9 \pm 2.8 \text{ (stat.)} \pm 5.6 \text{ (syst.)} \pm 3.1 \text{ (lumi.) pb } @8\text{TeV},$ 3.5fb⁻¹
- Consistent with the Standard Model prediction of 47.0 ± 2.0 pb and 57.3^{+2.3}_{-1.6} pb.

PANIC2014: 08/28/2014

Charged Vector Boson Triple Gauge Couplings⁶

***** Extend the Electro-Weak Lagrangian

$$\frac{\mathcal{L}_{eff}^{VWW}}{g_{VWW}} = ig_{1}^{V}(W_{\mu\nu}^{*}W^{\mu}V^{\nu} - W_{\mu}^{*}V_{\nu}W^{\mu\nu}) + i\kappa_{V}W_{\mu}^{*}W_{\nu}V^{\mu\nu} + i\frac{\lambda_{V}}{M_{W}^{2}}W_{\lambda,\mu}^{*}W_{\nu}^{\mu}V^{\nu\lambda}
- g_{4}^{V}W_{\mu}^{*}W_{\nu}(\partial^{\mu}V^{\nu} + \partial^{\nu}V^{\mu}) + g_{5}^{V}\epsilon^{\mu\nu\lambda\rho}(W_{\mu}^{*}\partial_{\lambda}W_{\nu} - \partial_{\lambda}W_{\mu}^{*}W_{\nu})V_{\rho}
+ i\tilde{\kappa}_{V}W_{\mu}^{*}W_{\nu}\tilde{V}^{\mu\nu} + i\frac{\lambda_{V}}{M_{W}^{2}}W_{\lambda\mu}^{*}W_{\nu}^{\mu}\tilde{V}^{\nu\lambda}$$

- Lorentz invariant
- V=Z, γ

- > Require that C and P be conserved separately: $g_4^V = g_5^V = \tilde{\kappa}_V = \tilde{\lambda}_V = 0$
- > EM gauge invariance: $g_1^{\gamma}=1$
- $\succ \text{ Redefine: } \mathbf{g}_1^{\mathbf{Z}} = 1 + \Delta \mathbf{g}_1^{\mathbf{Z}}, \kappa_{\mathbf{V}} = 1 + \Delta \kappa_{\mathbf{V}}$
- > aTGCs: $\Delta g_1^Z \neq 0$, $\Delta \kappa_V \neq 0$, $\lambda_V \neq 0$ for any of the five couplings represents a deviation from the SM
 - New particles present at tree level
 - Loop effects of heavy particles
 - Non-abelian structure of the gauge sector
- Assuming the presence of a Higgs doublet, SU(2)xU(1) gauge invariance and considering up to dimension 6 operators:
 - $\lambda_z = \lambda_\gamma = \lambda$
 - $\Delta \kappa_{z} = \Delta g_{1}^{Z} \Delta \kappa_{\gamma} * \tan^{2} \theta_{w}$

WW $\rightarrow l \nu l \nu$ aTGC Measurement

WV Interactions @ CMS

* 1D 95% CL limits: $-0.048 < \lambda_z < 0.048$ $-0.095 < \Delta g_1^z < 0.095$ $-0.22 < \Delta \kappa_\gamma < 0.22$

- **Use the leading lepton** p_T spectrum
- Quadratic dependence of the cross-section on aTGCs
- Interpolate using MCFM NLO
- aTGC presence would enhance the yield at high p_T values
- Incorporate the systematic uncertainties into the likelihood function by introducing nuisance parameters with Gaussian constraints.

$WV \rightarrow l\nu jj$ Challenges

***** Vast majority of events originate from the W+jets background

d n W e ve 8

- WW+WZ production is dominated by quark-antiquark collisions
 - W vs Z mass difference ~resolution of the detector, thus the reconstructed signal is WW+WZ
 - $\succ \sigma_{WW+WZ} \approx 70 \text{ pb} \text{ (mainly WW} \sim 70\%)$
- * The Signal to Background ratio is much worse at the LHC and stronger cuts as well as improved analysis techniques

$WV \rightarrow l\nu jj$ Advantages

Why study the diboson production in the WW+WZ semileptonic channel ?

- Q. Why do you rob banks?
- A. Because, that's where the money is.

- John Dillinger

9

* Higher Standard Model and Potential New Physics Signal Production Rates

- > Serves as a precursor to other analyses with hadronic final states
 - Complimentary final states (e.g. $W(\rightarrow jj)+\gamma$, $V(\rightarrow jj)+Z(\rightarrow MET)$) high event counts
 - Merged high p_T jets enhanced aTGC contribution
 - aQGC & Vector Boson Fusion first signatures
- ➤ Current WV → *lvjj* Analysis Goals:
 - Confirm the WV signal in the semi-leptonic events at CMS
 - Set limits on Anomalous Triple Gauge couplings

WV $\rightarrow l\nu jj$ Analysis

> Select central μ (p_T>25GeV), *e* (p_T>35GeV), MET (>25, 30GeV) and reconstruct the leptonic W (m_T>30, 50GeV)

Reconstruct exactly two (PU corrected) AK5 jets
 (p_T>35GeV, |η|<2.6)

Object level cuts to remove additional leptons, poorly reconstructed or b-jets

- > Implement quality cuts to enhance S/B:
 - Dijet $p_T^{ij} > 20 \text{GeV}$, $|\Delta \eta_{ij}| < 1.5$
 - Reduce the W+jets background by removing low p_T V candidates and jets with a high degree of separation
- **>** Backgrounds:
 - **W**+Jets (σ=3.1x10⁴pb) Dominant background
 - > Z+Jets (σ =3.0x10³pb) smaller σ and one lepton misID'd
 - ttbar (σ=163pb) -two real W's and two b-jets; reduced by antibtagging or used as a control sample
 - Single Top (σ=85pb) one (leptonic) W and a b-jet, reduced by anti-btagging
 - QCD/Multijet shape taken from the Data sideband with inverted isolation and yield from MET fit
 - Reasonable agreement between data and MC, but higher precision needed to extract WV

$WV \rightarrow l\nu jj M_{jj}$ Spectrum Fit

- Unbinned maximum likelihood for 40 < M_{jj} < 150 GeV</p>
- > Shape templates taken from Monte Carlo (and multijet sideband)
- > Two separate fits for muon and electron event yields (combine when evaluating the cross-section)
 - The background contributions are free to float subject to Gaussian constraints.

Yield Constraints

Process	Shape	Constraint on normalization
Diboson (WW+WZ)	sim.	Unconstrained
W+jets	sim.	$31314~\mathrm{pb}\pm5\%$ (NLO)
tī	sim.	163 pb ±7% (NLO)
Single top	sim.	85 pb ±5% (NNLO)
Drell-Yan+jets	sim.	3.05 nb ±4.3% (NNLO)
Multijet	data	$E_{\rm T}^{\rm miss}$ fit in data

- W+jets shape is a combination of:
 - Default (MADGRAPH) MC
 - > Either Matrix Element Parton Shower Matching Up (μ =2 μ_0) or Matching Down (μ =0.5 μ_0) MC
 - **Either Factorization Scale Up (q'=2q_0) or Scale Down (q'=0.5q_0) MC**

* The choice of Up or Down Sample is based on the best fit to the Data

***** The relative fractions (α, β) are free to vary in the fit (empirical model):

 $\mathcal{F}_{W+jets} = \alpha \cdot \mathcal{F}_{W+jets}(\mu_0^2, q'^2) + \beta \cdot \mathcal{F}_{W+jets}(\mu'^2, q_0^2) + (1 - \alpha - \beta) \cdot \mathcal{F}_{W+jets}(\mu_0^2, q_0^2)$

* Diboson contribution is free to float during the fit

PANIC2014: 08/28/2014

WV → *lvjj* Cross Section

We extract 2682±482 WW+WZ events out of 1.15x10⁵ (4.3σ using profile likelihood ratio)

Systematics:

- Potential Fit Bias verified to be small by performing pseudo experiments and corrected for based on the resulting pull distributions.
- W+jets shape and uncertainties due to the choice of ME-PS matching and Factorization/Renormalization scale covered by the empirical model
- Uncertainties due to JES, JER, MET resolution, trigger efficiency, lepton reconstruction & selection efficiency, choice of parton PDF, jet veto and luminosity are included

↔ σ(pp → WW+WZ) = 68.9 ± 8.7 (stat.) ± 9.7 (syst.) ± 1.5 (lum.) pb, consistent with NLO expectation of 65.6 ± 2.2 pb.

$WV \rightarrow l\nu jj$ aTGC Measurement

PANIC2014: 08/28/2014

WV Interactions @ CMS

Diboson Cross-Sections at The LHC

\succ Compare the ratios of $\sigma_{Measured}/\sigma_{Predicted}$

CMS Preliminary **Diboson Cross Section Measurements** ∫£ dt [fb⁻¹] Status: July 2014 Apr 2014 Reference 44.0 ± 0.0 + 3.2 - 4.2 pb (dat 25NNLO (theory) $\sigma^{\rm fid}(\gamma\gamma)[\Delta R_{\gamma\gamma} > 0.4]$ 4.9 JHEP 01, 086 (2013 CMS measurements 7 TeV CMS measurement (exp+th) 2.77 ± 0.03 ± 0.36 pb (data MCFM (theory) $\sigma^{\rm fid}({\sf W}\gamma\to\ell\nu\gamma)$ 4.6 PBD 87, 112003 (2013) vs. NLO theory = 1.76 ± 0.03 ± 0.22 pb (data) MCFM (theory) $-[n_{iet} = 0]$ • 4.6 PRD 87, 112003 (2013 8 TeV CMS measurement (exp+th) 1.31 ± 0.02 ± 0.12 pb (data) MCFM (theory) $\sigma^{\rm fid}({\sf Z}\gamma\to\ell\ell\gamma)$. ATLAS Preliminary 4.6 PRD 87, 112003 (2013) $\gamma\gamma$, (NNLO th.) $1.04 \pm 0.11 \pm 0.09$ 5.0 fb⁻¹ = 1.05 ± 0.02 ± 0.11 pb (data) MCFM (theory) Run 1 $\sqrt{s} = 7, 8 \text{ TeV}$ $-[n_{iet} = 0]$ 4.6 PRD 87, 112003 (2013 Wγ $1.16 \pm 0.13 \pm 0.06$ 5.0 fb⁻¹ 72.0 ± 9.0 ± 19.8 pb (data) MCFM (theory) $\sigma^{\text{total}}(pp \rightarrow WW + WZ)$ 4.7 ATLAS-CONE-2012-157 Ζγ $0.98 \pm 0.05 \pm 0.05$ 5.0 fb⁻¹ $\sigma^{\rm fid}(W^{\pm}W^{\pm}jj)$ EWK 20.3 arXiv:1405.6241 [hep-ex 51.9 ± 2.0 ± 4.4 pb (data) MCFM (theory) 46 PRD 87, 112001 (2013 $\sigma^{total}(pp \rightarrow WW)$ 71.4 ± 1.2 + 5.5 - 4.9 pb (data MCFM (theory) WW+WZ $1.05 \pm 0.20 \pm 0.03$ 4.9 fb⁻¹ 20.3 ATLAS-CONF-2014-033 56.4 ± 6.8 ± 10.0 fb (data) MCFM (meary) $-\sigma^{\text{fid}}(WW \rightarrow ee)$ 4.6 PRD 87, 112001 (2013) $1.11 \pm 0.11 \pm 0.04$ 4.9 fb⁻¹ WW 3.9 ± 5.9 ± 7.5 fb (data) MCFM (menry) $-\sigma^{\rm fid}(WW \rightarrow \mu\mu)$ PRD 87, 112001 (2013) • 4.6 262.3 ± 12.3 ± 23.1 fb (data) MCEM (theory) LHC pp $\sqrt{s} = 7 \text{ TeV}$ WW $1.22 \pm 0.12 \pm 0.04$ 3.5 fb⁻¹ $-\sigma^{\rm fid}(WW \rightarrow e\mu)$ 46 PRD 87, 112001 (2013 Theory 19.0 + 1.4 - 1.3 ± 1.0 pb (data) MCFM (theory) 4.6 EPJC 72, 2173 (2012) $\sigma^{\text{total}}(pp \rightarrow WZ)$ WZ $1.17 \pm 0.10 \pm 0.03$ 4.9 fb⁻¹ 20.3 + 0.6 - 0.7 + 1.4 - 1.3 pb (data) MCFM (meory) Data stat stat+syst 13.0 ATLAS-CONF-2013-02 • 99.2 + 3.8 - 3.0 + 6.0 - 6.2 fb (data) MCFM (theory) $-\sigma^{\text{fid}}(WZ \rightarrow \ell \nu \ell \ell)$ 13.0 ATLAS-CONE-2013-02 WZ $1.12 \pm 0.08 \pm 0.05$ 19.6 fb⁻ 6.7 ± 0.7 + 0.5 - 0.4 pb (data) MCFM (theory) JHEP 03, 128 (2013) 46 $\sigma^{\text{total}}(pp \rightarrow ZZ)$ LHC pp $\sqrt{s} = 8 \text{ TeV}$ 0.5 - 0.4 ± 0.4 pit (data) MCFM (theory) ATLAS-CONF-2013-020 20.3 18.0 ± 4.0 fb (data) Powheg (theory) 4.5 arXiv:1403.5657 [hep-ex] ZZ $0.99 \pm 0.15 \pm 0.06$ 4.9 fb⁻¹ $-\sigma^{\text{total}}(pp \rightarrow ZZ \rightarrow 4\ell)$ Theory Powneg (uneory) 107 D ± 9.0 ± 5.0 tb (data) Powneg (theory) 25.4 ± 3.3 − 3.0 ± 1.6 − 1.4 fb (data) PownegBox 6.00222 (theory) 10.7 ± 1.3 − 1.2 ± 1.0 fb (data) MCFM (theory) arXiv:1403.5657 [hep-ex] 20.3 JHEP 03, 128 (2013) Data 4.6 $-\sigma^{\text{fid}}(\mathsf{ZZ}\to 4\ell)$ ΖZ $1.00 \pm 0.10 \pm 0.08$ 19.6 fb⁻¹ stat-svs 20.3 ATLAS-CONF-2013-020 $-\sigma^{\text{fid}}(\mathsf{ZZ}^* \to 4\ell)$ 0.8 + 3.8 - 3.5 + 2.1 - 1.9 fb (data 4.6 JHEP 03, 128 (2013 1.5 $-\sigma^{\text{fid}}(\mathsf{ZZ}^* \to \ell\ell\nu\nu)$ 0.5 2 4.6 IHEP 03 128 (2013) 1.8 2.0 0.4 0.6 0.8 1.0 1.2 1.6 Production Cross Section Ratio: $\sigma_{exp} / \sigma_{theo}$ 02 1.4 All results at: http://cern.ch/ao/pNi7 data/theory

> Excesses in the measured cross-sections are generally observed

 \blacktriangleright Measurements are within 3σ of the theory predictions

PANIC2014: 08/28/2014

ATLAS

WV Interactions @ CMS

CMS

Charged aTGCs Summary

Feb 2013

				ATLAS Limits CMS Limits D0 Limit LEP Limit
Δκ —			ŀWγ	-0.410 - 0.460 4.6 fb ⁻¹
			Wγ	-0.380 - 0.290 5.0 fb ⁻¹
			WW	-0.210 - 0.220 4.9 fb ⁻¹
	⊢−−−−		WV	-0.110 - 0.140 5.0 fb ⁻¹
	⊢		D0 Combination	-0.158 - 0.255 8.6 fb ⁻¹
	⊢ ●−1		LEP Combination	-0.099 - 0.066 0.7 fb ⁻¹
λ	⊢ −−1		Wγ	-0.065 - 0.061 4.6 fb ⁻¹
λ_{γ}	H		Wγ	-0.050 - 0.037 5.0 fb ⁻¹
	H-I		WW	-0.048 - 0.048 4.9 fb ⁻¹
	н		WV	-0.038 - 0.030 5.0 fb ⁻¹
	ю		D0 Combination	-0.036 - 0.044 8.6 fb ⁻¹
	H		LEP Combination	-0.059 - 0.017 0.7 fb ⁻¹
		<u> </u>		
-0.5	0	(0.5 1	1.5
			aTGC L	imits @95% C.L.

- New physics would manifest itself as an enhancement in the s-channel WV production
- More prevalent at high p_T's
- Generally stronger limits in channels with higher event counts

Feb 2013			
			ATLAS Limits CMS Limits D0 Limit LEP Limit
Arc	\vdash	WW	-0.043 - 0.043 4.6 fb ⁻¹
	H	WV	-0.043 - 0.033 5.0 fb ⁻¹
	⊢●┥	LEP Combination	-0.074 - 0.051 0.7 fb ⁻¹
2	\vdash	WW	-0.062 - 0.059 4.6 fb ⁻¹
Λz	H	WW	-0.048 - 0.048 4.9 fb ⁻¹
	\vdash	WZ	-0.046 - 0.047 4.6 fb ⁻¹
	H	WV	-0.038 - 0.030 5.0 fb ⁻¹
	юч	D0 Combination	-0.036 - 0.044 8.6 fb ⁻¹
	H	LEP Combination	-0.059 - 0.017 0.7 fb ⁻¹
۸qZ	\vdash	WW	-0.039 - 0.052 4.6 fb ⁻¹
∆9 ₁	⊢−−−−	WW	-0.095 - 0.095 4.9 fb ⁻¹
	⊢ – I	WZ	-0.057 - 0.093 4.6 fb ⁻¹
	юн	D0 Combination	-0.034 - 0.084 8.6 fb ⁻¹
	H	LEP Combination	-0.054 - 0.021 0.7 fb ⁻¹
-0.5	0	0.5 1	1.5
		aTGC L	imits @95% C.L

CMS sets either competitive or strongest limits to date

PANIC2014: 08/28/2014

Summary

***** Cross Section Measurements

- ➤ Implemented selections and extracted the signal for WZ → *lvll*, WW → *lvlv*, WV → *lvjj* processes
- **Excesses observed for several channels, but no evidence for physics beyond SM**

***** Anomalous Triple Gauge Couplings

- > Are expected to modify the spectrum at high p_T values
- Increased signal yield and aTGC discriminating ability in the semileptonic channel
- > No evidence of anomalous interactions between the charged vector bosons
- Limits set by CMS are either competitive or the strongest to date

Future Projections

- Relative strength of the anomalous signal will go up with increased energy
- Analyses to include merged jets, extensions to similar semileptonic final states and VBF topologies

Backup

Effective Field Theory and aTGCs

> Express the Lagrangian as an effective theory of the Standard Model

 $\mathcal{L} = \mathcal{L}_{SM} + \sum \frac{c_i}{\Lambda^2} \mathcal{O}_i + \cdots$

$$\mathcal{O}_{WWW} = \operatorname{Tr}[W_{\mu\nu}W^{\nu\rho}W^{\mu}_{\rho}] \qquad \mathcal{O}_{\tilde{W}WW} = \operatorname{Tr}[\tilde{W}_{\mu\nu}W^{\nu\rho}W^{\mu}_{\rho}] \\ \mathcal{O}_{W} = (D_{\mu}\Phi)^{\dagger}W^{\mu\nu}(D_{\nu}\Phi) \qquad \mathcal{O}_{\tilde{W}} = (D_{\mu}\Phi)^{\dagger}\tilde{W}^{\mu\nu}(D_{\nu}\Phi) \\ \mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger}B^{\mu\nu}(D_{\nu}\Phi) \qquad \mathcal{O}_{\tilde{W}} = \operatorname{CP}\operatorname{Odd}$$

- Expansion in powers of $1/\Lambda^2$ (a high energy scale where new physics comes into effect), rather than $1/m_W^2$
- 3 CP even and 2 CP odd parameters prior to EWSB
- The parameters in the default formalism can be expressed in terms of the EFT coefficients

$$g_1^Z = 1 + c_W \frac{m_Z^2}{2\Lambda^2}$$

$$\kappa_\gamma = 1 + (c_W + c_B) \frac{m_W^2}{2\Lambda^2}$$

$$\kappa_Z = 1 + (c_W - c_B \tan^2 \theta_W) \frac{m_W^2}{2\Lambda^2}$$

$$\lambda_\gamma = \lambda_Z = c_{WWW} \frac{3g^2 m_W^2}{2\Lambda^2}$$

$$g_4^V = g_5^V = 0$$

$$\tilde{\kappa}_\gamma = c_{\tilde{W}} \frac{m_W^2}{2\Lambda^2}$$

$$\tilde{\kappa}_Z = -c_{\tilde{W}} \tan^2 \theta_W \frac{m_W^2}{2\Lambda^2}$$

$$\tilde{\lambda}_\gamma = \tilde{\lambda}_Z = c_{\tilde{W}WW} \frac{3g^2 m_W^2}{2\Lambda^2}$$

PANIC2014: 08/28/2014

WV Interactions @ CMS

References

$\mathbf{\bigstar} \mathbf{WZ} \to l \mathbf{v} l l$

- CMS-PAS-SMP-12-006 (<u>http://cds.cern.ch/record/1564318?ln=en</u>)
- $\bigstar WW \rightarrow l\nu l\nu$
 - ➢ 7TeV Eur.Phys.J. C73 (2013) 2610 (<u>http://arxiv.org/abs/1306.1126</u>)
 - 8TeV Phys. Lett. B 721 (2013) 190–211 (<u>http://arxiv.org/abs/1301.4698</u>)
- $\bigstar WV \rightarrow l \nu j j$
 - Eur.Phys.J. C73 (2013) 2283 (<u>http://arxiv.org/abs/1210.7544</u>)

CMS Combinations

- https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP
- https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMPaTGC

***** EFT and aTGCs

Effective Field Theory: A Modern Approach to Anomalous Couplings (<u>http://arxiv.org/abs/1205.4231</u>)

