PANIC 2014 - Particles and Nuclei International Conference 2014

Contribution ID: 97

CANDLES – Search for Neutrino-less Double Beta Decay of ⁴⁸Ca –

Monday 25 August 2014 14:40 (20 minutes)

CANDLES is the project to search for neutrino-less double beta decay $(0\nu\beta\beta)$ of ⁴⁸Ca. $0\nu\beta\beta$ is acquiring great interest after the confirmation of neutrino oscillation which demonstrated nonzero neutrino mass. Measurement of $0\nu\beta\beta$ provides a test for the Majorana nature of neutrinos and gives an absolute scale of the effective neutrino mass.

In order to search for $0\nu\beta\beta$ of 48 Ca, we proposed CANDLES system by using CaF₂ scintillators. The CANDLES system aims at a high sensitive measurement by a characteristic detector system and 48 Ca enrichment. The system realizes a complete 4π active shield by immersion of the CaF₂ scintillators in liquid scintillator. The active shield leads to a low background condition for the measurement. On the other band, 48 Ca enrichment is also effective for the high sensitive measurement, because natural abundance of 48 Ca is very low (0.19\%). We have studied 48 Ca enrichment and succeeded in obtaining enriched 48 Ca although it is a small amount.

Now we have developed the CANDLES III system, which contained 350 g of ⁴⁸Ca without enrichment, at the Kamioka underground laboratory. Two improvements, a light-concentration system and a new DAQ system, were installed for the CANDLES III system. The light-concentration system improved a energy resolution by increasing a PMT photo-coverage by 80\%. The new DAQ system, which is a dead time less system, improved a rejection efficiency for a characteristic background origin. Now we checked detector performance with the light-concentration system and the new DAQ system.

Here we will report the detector performance for background rejection, and the expected sensitivity with the light-concentration system and the new DAQ system.

Primary author: Dr UMEHARA, Saori (Osaka University)

Co-authors: Prof. OGAWA, Izumi (Fukui University); Prof. FUSHIMI, Ken-ichi (The University of Tokushima); Prof. NOMACHI, Masaharu (Osaka University); Prof. HAZAMA, Ryuta (Osaka Sangyo University); Prof. YOSHIDA, Sei (Osaka University); Prof. KISHIMOTO, Tadafumi (Osaka University)

Presenter: Dr UMEHARA, Saori (Osaka University)

Session Classification: Neutrinos and related astrophysical implications

Track Classification: 3) Neutrinos and related astrophysical implications