

Search for heavy resonances in two-particle final states with leptons, jets and photons at CMS

Andreas Güth for the CMS Collaboration

III. Physikalisches Institut A, RWTH Aachen

SPONSORED BY THE

*

Federal Ministry of Education and Research Particles and Nuclei International Conference 2014 Hamburg

August 28th 2014

- CMS detector and performance
- Search for $\mu\mu$, *ee* resonances
- Search for *jj* resonances
- Search for γj resonances
- Projections for $Z'
 ightarrow \mu \mu, ee$ at $\sqrt{s} = 14~{\rm TeV}$
- Conclusion

Outline

• CMS detector and performance

- Search for $\mu\mu$, *ee* resonances
- Search for *jj* resonances
- Search for γj resonances
- Projections for $Z' \rightarrow \mu\mu$, ee at $\sqrt{s} = 14$ TeV

Conclusion

- CMS detector and performance
- Search for $\mu\mu$, *ee* resonances CMS-PAS-EXO-12-061
- Search for *jj* resonances
- Search for γj resonances
- Projections for $Z' o \mu \mu,$ ee at $\sqrt{s} = 14$ TeV
- Conclusion

- CMS detector and performance
- Search for $\mu\mu$, *ee* resonances
- Search for *jj* resonances CMS-PAS-EXO-12-059, CMS-PAS-EXO-12-023
- Search for γj resonances
- Projections for $Z' \rightarrow \mu\mu$, ee at $\sqrt{s} = 14$ TeV
- Conclusion

- CMS detector and performance
- Search for $\mu\mu$, *ee* resonances
- Search for *jj* resonances
- Search for γj resonances CMS-PAS-EXO-13-003 , arXiv:1406.5171
- \bullet Projections for $Z' \to \mu \mu, ee$ at $\sqrt{s} = 14 {\rm ~TeV}$
- Conclusion

Outline

- CMS detector and performance
- Search for $\mu\mu$, *ee* resonances
- Search for *jj* resonances
- Search for γj resonances
- Projections for $Z' \rightarrow \mu\mu$, ee at $\sqrt{s} = 14$ TeV CMS-NOTE-2013-002 , arXiv:1307.7135

Conclusion

- CMS detector and performance
- Search for $\mu\mu$, *ee* resonances
- Search for *jj* resonances
- Search for γj resonances
- Projections for $Z' \rightarrow \mu\mu$, ee at $\sqrt{s} = 14$ TeV
- Conclusion

Outline

- CMS detector and performance
- Search for $\mu\mu$, *ee* resonances
- Search for jj resonances
- Search for γj resonances
- Projections for $Z'
 ightarrow \mu \mu, ee$ at $\sqrt{s} = 14~{\rm TeV}$
- Conclusion

For more results of searches for high-mass resonances at CMS see the results web pages from the EXO and B2G groups

 $\label{eq:https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G$

CMS detector

93.5% of delivered luminosity Relative dilepton invariant mass resolution Electrons at 8 TeV recorded 1.5% above Mee > 500 GeV Muons 4% at $M_{\mu\mu} = 1$ TeV, 9% at $M_{\mu\mu} = 3$ TeV **Relative invariant mass resolution** My,jet: ~4.5% at $M_{\gamma,jet} = 1 \text{ TeV}$, ~3% at $M_{\gamma,jet} = 3 \text{ TeV}$ Analyses presented based Mjet, jet \sim 5% more details in the following on full 2012 dataset

Dilepton resonances - Signal models

CMS-PAS-EXO-12-061

Z' models considered in this talk

• Z'_{SSM} (Sequential Standard Model) with the same couplings to quarks and leptons as Z

• Z'_{ψ} from theories with E_6 GUT group

- Shape-based search for narrow resonance: Reduction of model-dependent effects (low-mass tails, Z'/Z interference)
- Further high-mass dilepton searches published by CMS:

RS graviton (spin-2 resonance) Phys. Lett. B 720 (2013) 63

Large extra dimensions (non-resonant) CMS-PAS-EXO-12-027 and CMS-PAS-EXO-12-031

Toy simulation of the invariant mass spectrum of dielectron events with a Z' signal at $M_{Z'} = 2$ TeV. The event yield is normalized to 19.6 fb⁻¹ at $\sqrt{s} = 8$ TeV.

Dilepton resonances - Selection

Dimuon event selection

Single-muon trigger, $p_T^\mu >$ 40 GeV, $|\eta^\mu| <$ 2.1

- Two muons with $p_T^\mu > 45$ GeV, $|\eta^\mu| < 2.4$
- Muons carry opposite electric charge

Dielectron event selection

Double-electron trigger, $E_T > 33$ GeV

- Two selected electrons with $E_T > 35$ GeV
- Analysis split into two channels with different background compositions
 - Both electrons in barrel $|\eta| < 1.422$
 - One electron in barrel and one in endcap $1.560 < |\eta| < 2.5$

Dilepton resonances - Invariant mass spectra

Dilepton resonances - Results

Bayesian 95% CL upper limits on Z'/Z cross section ratio, assuming narrow spin-1 resonance

$$R_{\sigma} = \frac{\sigma \left(pp \to Z' + X \to \ell^+ \ell^- + X \right) \left[0.6 \ M_{Z'}, 1.4 \ M_{Z'} \right]}{\sigma \left(pp \to Z + X \to \ell^+ \ell^- + X \right) \left[60 \ \text{GeV}, 120 \ \text{GeV} \right]}$$

Dijet resonances - Signal models

Search for narrow dijet resonances CMS-PAS-EXO-12-059

Model Name	X	Color	J	Decay
String resonances	S	mixed	mixed	$qg, q\bar{q}, gg$
Strong couplings				
Excited quark	q*	Triplet	1/2	qg
Axigluon	A	Octet	1	$q\bar{q}$
Coloron	C	Octet	1	$q\bar{q}$
s8 resonance	s8	Octet	0	gg
Weak couplings				
Heavy W	W'	Singlet	1	$q\bar{q}$
Heavy Z	Z'	Singlet	1	$q\bar{q}$
E ₆ diquark	D	Triplet	0	qq
RS graviton	G	Singlet	2	$q\bar{q}, gg$

Plot taken from T. Han, I. Lewis, Z. Liu; JHEP12(2010)085

Signal description

Cross section

- Strongly vs. weakly coupled models
- Parton luminosity of initial state

Resonance shape

• Impact of FSR depending on final state

Dijet resonances - Signal models

Model Name	X	Color	J	Decay
String resonances	S	mixed	mixed	$qg, q\bar{q}, gg$
Strong couplings				
Excited quark	q*	Triplet	1/2	qg
Axigluon	A	Octet	1	$q\bar{q}$
Coloron	C	Octet	1	$q\bar{q}$
s8 resonance	s8	Octet	0	gg
Weak couplings				
Heavy W	W'	Singlet	1	$q\bar{q}$
Heavy Z	Z'	Singlet	1	$q\bar{q}$
E ₆ diquark	D	Triplet	0	qq
RS graviton	G	Singlet	2	$q\bar{q}, gg$

Plot taken from T. Han, I. Lewis, Z. Liu; JHEP12(2010)085

Signal description

Cross section

- Strongly vs. weakly coupled models
- Parton luminosity of initial state

Resonance shape

• Impact of FSR depending on final state

Dijet reconstruction and resolution

Standard jet reconstruction

- Particle-flow event reconstruction and jet identification
- Jets reconstructed with anti- k_T algorithm, jet parameter R = 0.5

Wide jet reconstruction

High jet energy \rightarrow FSR significant FSR recovery important for signal shape

- Select two leading jets
- Add other jets within $\Delta R < 1.1 = R_{wide}$
- *R_{wide}* determined in study of expected limits

Effect of FSR stronger for gluon than quark jets

 \rightarrow Statistical analysis for three signal shapes, depending on final state (qq, gq, gg)

Dijet resonances - Mass spectrum

Dijet resonances - Results

Bayesian 95% CL upper cross section limits

Impact of signal shape

Limits on $\sigma \times BR \times A$ by factors 2 to 3 stronger for $q^{(-)}q$ compared to gg final state

Dominant syst. uncertainties

Background

• Uncertainties on bkg fit parameters increase cross section limit by:

 $\sim 100\% \ \, {\rm at} \ \, M=1 \ \, {\rm TeV} \\ \sim 20\% \quad \, {\rm at} \ \, M=2.5 \ \, {\rm TeV} \\ < 5\% \quad \, {\rm at} \ \, M>3.5 \ \, {\rm TeV}$

Signal

• Jet energy scale: 1.3% shift of M_{res}

L	.im	its	-	excerpts
---	-----	-----	---	----------

	-	
Model	Mass Excl. [TeV]	
String resonance	1.20-5.08	
E ₆ diquarks	1.20-4.75	
Ζ′	1.20-1.68	
RS graviton	1.20-1.58	

 $\label{eq:Further} Further dijet resonance results: \\ dijets with b-tag, CMS-PAS-EXO-12-023 \\ dijets with W/Z-tag, arXiv:1405.1994 \\ \end{array}$

$\gamma+{\rm jet}$ resonances - Excited quarks

Quarks as composite objects \rightarrow excited quarks q^* CMS-PAS-EXO-13-003 $\mathcal{L}_{transition}^{q \leftrightarrow q^*} = \frac{1}{2\Lambda} \bar{q_R^*} \sigma^{\mu\nu} \left[g_s f_s \frac{\lambda_a}{2} G_{\mu\nu}^a + g f \frac{\tau}{2} W_{\mu\nu} + g' f' \frac{Y}{2} B_{\mu\nu} \right] q_L + h.c.$

Excited quark model

• s-channel q^{*} production at the LHC:

- Mass-degenerate, first generation excited quarks (u^{*}, d^{*}) considered
- Free parameters: compositeness scale Λ, M_{q*}, three coupling strengths; assumption: f = f_s = f'

Event selection

- Single-photon trigger $E_T^{\gamma} > 150 \text{ GeV}$
- Event reconstruction based on particle-flow algorithm
- $p_T^\gamma > 170~{
 m GeV}$, $|\eta^\gamma| < 1.444$
- $p_T^{jet} > 170~{
 m GeV}$, $|\eta^{jet}| < 3.0$ $\Delta R(\gamma, jet) > 0.5$
- $ullet \ |\Delta\eta(\gamma, jet)| < 2.0 \ |\Delta\phi(\gamma, jet)| > 1.5$
- $M_{\gamma,jet} > 560$ GeV

$\gamma+{ m jet}$ resonances - Invariant mass $M_{\gamma jet}$

Background fit modelling mass dependence of background due to PDFs and QCD ME:

$$\frac{d\sigma}{dM} = P_0 \frac{\left(1 - M/\sqrt{s}\right)^{P_1}}{\left(M/\sqrt{s}\right)^{P_2 + P_3 \ln(M/\sqrt{s})}}$$

Background composition

Process	Fraction	
$\begin{array}{c} q\bar{q} \rightarrow \gamma g \\ qg \rightarrow \gamma q \end{array}$	80.5%	
QCD dijet	18.5%	
$W/Z + \gamma$	1%	

$\gamma + jet$ resonances - Results

Dileptons - Anticipating higher \sqrt{s}

Short term projection for 2015

Expect to extend current discovery reach early in the planned $\sqrt{s} = 13$ TeV run!

Long term projections

- Discovery reach at √s = 14 TeV studied with integrated luminosities of 300 fb⁻¹, 1000 fb⁻¹, 3000 fb⁻¹
- Generator level events smeared to the detector response
- $A \cdot \epsilon$ and resolution from $\sqrt{s} = 8$ TeV analysis

Expect sensitivity to Z's with $M_{Z'} \gtrsim 5$ TeV

CMS-NOTE-2013-002; arXiv:1307.7135

High-mass resonance searches at CMS up to now

- No new physics observed in high-mass ($M \gg 125~{\rm GeV}$) resonance searches at CMS, yet
- Wide range of theories of physics beyond the SM probed and new limits set
- Exclusion limits pushed into the multi-TeV range, for example: Dileptons: Z'_{SSM} : $M_{Z'} > 2.96$ TeV Dijets: E_6 diquarks: $M_D > 4.75$ TeV γ +jet: Excited quarks: $M_{q^*} > 3.5$ TeV

High-mass resonance searches at CMS up to now

- No new physics observed in high-mass ($M \gg 125~{\rm GeV}$) resonance searches at CMS, yet
- Wide range of theories of physics beyond the SM probed and new limits set
- Exclusion limits pushed into the multi-TeV range, for example: Dileptons: Z'_{SSM} : $M_{Z'} > 2.96$ TeV Dijets: E_6 diquarks: $M_D > 4.75$ TeV γ +jet: Excited quarks: $M_{q^*} > 3.5$ TeV

High-mass resonance searches at CMS up to now

- No new physics observed in high-mass ($M \gg 125~{\rm GeV}$) resonance searches at CMS, yet
- Wide range of theories of physics beyond the SM probed and new limits set
- Exclusion limits pushed into the multi-TeV range, for example: Dileptons: Z'_{SSM} : $M_{Z'} > 2.96$ TeV Dijets: E_6 diquarks: $M_D > 4.75$ TeV γ +jet: Excited quarks: $M_{q^*} > 3.5$ TeV

Summary

High-mass resonance searches at CMS up to now

- No new physics observed in high-mass ($M \gg 125~{\rm GeV}$) resonance searches at CMS, yet
- Wide range of theories of physics beyond the SM probed and new limits set

• Exclusion limits pushed into the multi-TeV range, for example: Dileptons: Z'_{SSM} : $M_{Z'} > 2.96$ TeV Dijets: E_6 diquarks: $M_D > 4.75$ TeV γ +jet: Excited quarks: $M_{q^*} > 3.5$ TeV

Looking forward to (early) 2015 and beyond

- Resonance searches at high mass gain significantly from increase in center-of-mass energy
- Looking forward to first fb^{-1} of $\sqrt{s} = 13$ TeV data

Backup slides

LHC & CMS performance

Cumulative *pp* luminosity delivered

93.5% of delivered luminosity recorded

CMS Integrated Luminosity Per Day, pp, 2012, $\sqrt{s}=$ 8 TeV

Analyzed datasets

- Analyses based on $\sqrt{s} = 8$ TeV data
- Subdetector requirements reduce analyzed integrated luminosity to:

dimuon analysis: $L_{int} = 20.6 \text{ fb}^{-1}$ other analyses shown: $L_{int} = 19.6 \text{ fb}^{-1}$

Luminosity up to 7.67 Hz/nb at 50 ns bunch spacing \rightarrow On average 21 interactions per bunch crossing

Dijet resonances - Results overview

Model	Final State	Obs. Mass Excl.	Exp. Mass Excl.
		[TeV]	[TeV]
String Resonance (S)	qg	[1.20,5.08]	[1.20,5.00]
Excited Quark (q*)	qg	[1.20,3.50]	[1.20,3.75]
E_6 Diquark (D)	qq	[1.20,4.75]	[1.20,4.50]
Axigluon (A)/Coloron (C)	qq	[1.20, 3.60] + [3.90, 4.08]	[1.20,3.87]
Color Octet Scalar (s8)	gg	[1.20,2.79]	[1.20,2.74]
W' Boson (W')	qq	[1.20,2.29]	[1.20,2.28]
Z' Boson (Z')	qq	[1.20,1.68]	[1.20,1.87]
RS Graviton (G)	qq+gg	[1.20,1.58]	[1.20,1.43]

Dijet resonances - b-tagged jets

Extension of dijet search: b-tagging

- Selected dijet events split into 0,1,2 b-tag categories
- Parameter added to signal model: $f_{b\bar{b}} = \frac{BR(X \rightarrow bb)}{BR(X \rightarrow ij)}$
- Three signal types: gg/bb (RS), $q\bar{q}/bb$ (Z'), bg (b^*)
- Signal shapes per category depending on $f_{b\bar{b}}$, ϵ_{b-tag}

Process	$Z' f_{b\bar{b}} = 0.2$	RS $f_{b\bar{b}} = 0.1$	$b^* \rightarrow bg$
Exclusion 95% CL [TeV]	1.20 - 1.68	1.42 - 1.57	1.34 - 1.54

Dijet resonances - b-tagged jets II

$\gamma+{\rm jet}$ resonances - Results

	σ_{syst} [%]
jet energy res.	10
jet energy scale	1.0-1.4
γ energy res.	0.5
γ energy scale	1.5
L _{int}	2.6
$A \cdot \epsilon$ (signal)	4
μ_{ren}, μ_{fac}	4

- Energy resolution uncertainties: 5% uncertainty on $M_{\gamma jet}$ resolution
- Energy scale uncertainties: 1% shift of resonance mass
- Stat. uncertainty bkg fit: 1% at 1 TeV, 30% at 3 TeV

• FSR scale variation:

7%~(1~TeV) , 4%~(3~TeV) change in resonance width

Selection	1 TeV	4 TeV
	(%)	(%)
Photon ID	70.2	70.9
$p_{\mathrm{T}}^{\gamma} > 170 \mathrm{GeV}$	67.2	70.4
$ \hat{\eta}^{\gamma} < 1.4442$	65.0	68.2
$p_{\mathrm{T}}^{\mathrm{jet}} > 170 \mathrm{GeV}$	63.6	68.1
$ \eta^{ m jet} < 3.0$	63.4	68.1
$\Delta \phi(\gamma, \text{jet}) > 1.5$	63.3	68.0
$ \Delta\eta(\gamma, \text{jet}) < 2.0$	54.6	57.4
$M_{\gamma,\text{jet}} > 560 \text{GeV}$	54.2	57.3

Event selection: Muons

Muon selection

- Reconstructed in inner tracker and muon system, cuts on track quality
- Relative uncertainty on p_T^{μ} , $\frac{\delta p_T^{\mu}}{p_{\tau}^{\mu}} < 0.3$
- Isolation based on tracker information

Dimuon event selection

Single-muon trigger, $p_T^\mu >$ 40 GeV, $|\eta^\mu| <$ 2.1

- Two muons with $p_T^\mu >$ 45 GeV, $|\eta^\mu| <$ 2.4
- Muon tracks from the same vertex
- Muons carry opposite electric charge
- Cut on dimuon opening angle against muons from cosmic rays

Event selection: Electrons

Electron selection

- ECAL cluster satisfying shower shape criteria
- Small relative energy deposit in HCAL behind the ECAL cluster
- Isolation in both ECAL and HCAL
- ECAL cluster matched to isolated track
- Cuts to reject converted photons
- E_T assignment based on ECAL cluster

Dielectron event selection

Double-electron trigger, $E_T > 33$ GeV

- Two selected electrons with $E_T > 35$ GeV
- Analysis split into two channels
 - Both electrons in barrel $|\eta| < 1.422$
 - One electron in barrel and one in endcap $1.560 < |\eta| < 2.5$

Both electrons in the barrel

One electron in the barrel, one in the endcap

Background expectation

Three different types of background:

 $M_{e\mu}$ distribution of $e\mu$ events

Irreducible Z/γ^* background

- Largest background: ~ 75% (*ee*), 80% ($\mu\mu$) of expected events above $M_{\ell\ell} = 200 \text{ GeV}$
- Shape from simulation (POWHEG)
- Higher-order corrections studied with FEWZ (NNLO QCD) and HORACE (NLO EWK)

$t\bar{t}, tW$, diboson backgrounds

- $\sim 20\%$ above $M_{\ell\ell} = 200$ GeV
- Flavor symmetric \rightarrow Examine $e\mu$ spectrum in data to cross-check simulation

Jets misidentified as leptons

- W+jet, QCD multijet, γ +jet
- Negligible for muon channel
- Derived from data

Invariant mass spectra

Mass spectra divided into three regions:

60 GeV $< M_{\ell\ell} <$ 120 GeV: Z peak

- Normalization of the simulated background
- Measurement of reconstruction, ID and trigger efficiencies up to $p_T^{\mu}, E_T^e \sim 300 \text{ GeV}$
- Study of electron energy/muon momentum scale and resolution

120 GeV $< M_{\ell\ell} <$ 200 GeV: Control region

- No new physics expected (Tevatron)
- Test agreement of data and expectation beyond the Z peak

$M_{\ell\ell} > 200$ GeV: Signal region

Data well described by the expectation

Invariant mass spectra - data/expectation ratio plots

Muons

Electrons

Plots show statistical uncertainties, only. No excess observed, setting limits.

Model and limit setting

Model & signal region

- Signal model: BW $(M_{\ell\ell}|M_{Z'}, \Gamma_{Z'}) \otimes \text{Gauss}(M_{\ell\ell}|\sigma_{resolution})$
- Background model: Parameterized function, shape from fit to simulation
- Data considered: Events with $M_{\ell\ell} > 200 \text{ GeV}$
- Mass window: $M_{Z'} \pm 6$ times mass resolution

Relative invariant mass resolution (electron barrel-endcap)

Limit setting

Bayesian 95% CL upper limits on Z' to Z cross section ratio R_σ

$$R_{\sigma} = \frac{\sigma\left(\rho p \to Z' + X \to \ell^{+}\ell^{-} + X\right)}{\sigma\left(\rho p \to Z + X \to \ell^{+}\ell^{-} + X\right)} = \frac{N\left(Z' \to \ell^{+}\ell^{-}\right)}{N\left(Z \to \ell^{+}\ell^{-}\right)} \cdot \frac{A\left(Z \to \ell^{+}\ell^{-}\right)}{A\left(Z' \to \ell^{+}\ell^{-}\right)} \cdot \frac{\epsilon\left(Z \to \ell^{+}\ell^{-}\right)}{\epsilon\left(Z' \to \ell^{+}\ell^{-}\right)}$$

 $\sigma(Z')$ evaluated in mass range $M_{Z'}$ \pm 40% $\,$, $\,$ $\,\sigma(Z)$ evaluated in 60 GeV $< M_{\ell\ell} <$ 120 GeV $\,$

- Uncertainty on the luminosity cancels in the ratio R_{σ}
- Uncertainties on the absolute values of $\epsilon_{trigger}$, $\epsilon_{reconstruction}$ and mass scale reduce to uncertainties on their evolution from the Z peak to high mass

Systematic uncertainties

- Dominant uncertainty on the limits:
 Ratio of acceptance times efficiency between Z' and Z
 3% for dimuon, 4% for barrel-barrel and 6% for barrel-endcap dielectron channel
- Z/γ^* background: Shape uncertainty on the background fit from PDFs and higher order corrections ranges from 2% at $M_{\ell\ell} = 200$ GeV to 20% at $M_{\ell\ell} = 3000$ GeV
- Uncertainties on the subleading backgrounds studied but less important
- Impact of uncertainty on the muon momentum scale studied with different detector misalignment scenarios and found to be negligible

Limits

Dileptons - Projection for $\sqrt{s} = 14$ TeV

Long term projections

- Discovery reach at \sqrt{s} = 14 TeV studied with integrated luminosities of 300 fb⁻¹, 1000 fb⁻¹, 3000 fb⁻¹
- Generator level events smeared to the detector response
- $A \cdot \epsilon$ and resolution from $\sqrt{s} = 8$ TeV analysis

Expect sensitivity to Z's with $M_{Z'} \gtrsim 5$ TeV

Short term projection for 2015

Expect to extend current discovery reach early in the planned $\sqrt{s} = 13$ TeV run!

Reference: CMS-NOTE-2013-002; arXiv:1307.7135

Invariant mass spectra - all channels

Invariant mass spectra - cumulative distributions

Limits - all channels

Limits on spin-2 resonance (RS graviton)

Limits for $\sqrt{s} = 8$ TeV data only

- Spin-2 resonance
- Couplings to $q\bar{q}$ and $gg \rightarrow different$ acceptance compared to Z'_{SSM} and Z'_{ψ}
- Combination of $\sqrt{s} = 7$ TeV and $\sqrt{s} = 8$ TeV datasets only valid for models with the same q \bar{q} to gg coupling ratio as RS graviton

Lower mass limits

- $\sqrt{s} = 8$ TeV data only:
 - $G_{KK}(k/\bar{M}_{Pl}=0.1)$: 2260 GeV
 - $G_{KK}(k/\bar{M}_{Pl}=0.05)$: 1900 GeV
- $\sqrt{s}=$ 7 TeV and $\sqrt{s}=$ 8 TeV data:
 - $G_{KK}(k/\bar{M}_{Pl}=0.1)$: 2390 GeV
 - $G_{KK}(k/\bar{M}_{Pl}=0.05)$: 2030 GeV

Reference: Phys. Lett. B 720 (2013) 63; DOI:10.1016/j.physletb.2013.02.003

Background from jets misidentified as electrons

- Measure rate of jets identified as electron candidates with a 'loose' electron ID passing the electron ID used in the analysis
 - Select jet enriched control sample using single photon triggers and asking for a single 'loose' electron candidate
 - Subtract contamination from processes with real electrons from simulation
 - Determine so-called 'fake-rate' FR
- Apply the measured 'fake-rate'
 - Multijet contribution:

Select multijet background enriched control sample with two 'loose' electron candidates that fail the electron ID used in the analysis

Weight each electron by FR/(1 - FR)

- For further contributions (W+jet, γ +jet) apply measured 'fake-rate' to simulation
- 40% systematic uncertainty applied

Dielectron channels:

- Fit double-sided Crystal Ball function convoluted with Breit Wigner function to $M_{\ell\ell}^{reco} M_{\ell\ell}^{true,MC}$ in simulated Drell-Yan samples in different mass bins
- Invariant mass resolution from simulation corrected for difference between resolutions at the Z peak obtained from data and simulation

Resolution in barrel-barrel channel

Resolution in barrel-endcap channel

Dimuon channel:

- Invariant mass resolution obtained from Gaussian fits to $(M_{\ell\ell}^{reco} M_{\ell\ell}^{true,MC})/M_{\ell\ell}^{true,MC}$ in simulated Drell-Yan samples
- Different detector misalignment scenarios consistent with alignment studies compared
- Invariant mass resolution in the dimuon channel is \sim 4% at $M_{\mu\mu}=1$ TeV and \sim 9% at $M_{\mu\mu}=3$ TeV

Background from muons from cosmic rays

Opening angle between the two muons required to be smaller than $\pi-0.02$ rad Plotted: $\alpha = \pi -$ opening angle CMS 2012 preliminary $\sqrt{s} = 8 \text{ TeV} \int L dt = 20.6 \text{ fb}^{-1}$ Data 10⁵ $DY \rightarrow uu$ 10 $W \rightarrow uv$ 103 10² 10 10'1 10-5 10-4 10-3 102 101 'n. 10 3D angle

Both the cut on α and the primary vertex requirement have been removed in this plot The already small contribution from cosmic muons lies mainly in the region $\alpha < 0.002$

ECAL response at high electron energy

- Single ECAL crystal readout electronics saturate at high energies (\sim 1.7 TeV in the barrel, \sim 3.0 TeV in the endcaps)
- Linearity of ECAL energy response at high energies tested by relating the energy deposit in the single crystal with the highest energy deposit (*E*₁) to the energy deposits in the 24 surrounding crystals in a 5 × 5 crystal matrix (*E*₂₅)
- Algorithm describing this relation takes into account the impact point position on the crystal face
- Parameters of the algorithm taken from simulation
- Measured energy deposit E_1 compared to E_1^{rec} determined from the 24 surrounding crystals

Electrons with E_{25} > 350 GeV in the endcaps

